RESUMEN
Background: Axial spondyloarthropathy(AS) is a chronic inflammatory disease primarily affecting the axial skeleton, often characterized by sacroiliitis. While pulmonary embolism (PE), a potentially lethal condition, has been linked to several autoimmune diseases, limited data exist regarding PE risk among patients with AS. Methods: This retrospective cohort study utilized the Clalit Healthcare Services (CHS) database, including 5825 patients with AS and 28,356 matched controls. Follow-up began at the date of first AS diagnosis for patients and at the matched patient's diagnosis date for controls and continued until PE diagnosis, death, or study end date. Results: Prevalence of PE before AS diagnosis in patients compared to controls was 0.4% vs. 0.2% (p < 0.01). The incidence rate of PE was 11.6 per 10,000 person-years for patients with AS and 6.8 per 10,000 person-years for controls. The adjusted hazard ratio (HR) for PE in patients with AS was 1.70 (p < 0.001). Subgroup analysis demonstrated excess risk for PE in patients with AS regardless of gender and age, with variations among AS treatment categories. Discussion: Our findings highlight a significant association between AS and PE, indicating an increased risk in patients with AS independent of age and sex and suggests a subclinical level of inflammation. Preliminary results suggest a protective role of immunosuppressing drugs. Further research into the impact of treatment strategies should be conducted and could inform clinical management and reduce the life-threatening risk of PE in Patients with AS.
RESUMEN
Many biomarkers have been shown to be associated not only with chronological age but also with functional measures of biological age. In human populations, it is difficult to show whether variation in biological age is truly predictive of life expectancy, as such research would require longitudinal studies over many years, or even decades. We followed adult cohorts of 20 Drosophila Genetic Reference Panel (DGRP) strains chosen to represent the breadth of lifespan variation, obtain estimates of lifespan, baseline mortality, and rate of aging, and associate these parameters with age-specific functional traits including fecundity and climbing activity and with age-specific targeted metabolomic profiles. We show that activity levels and metabolome-wide profiles are strongly associated with age, that numerous individual metabolites show a strong association with lifespan, and that the metabolome provides a biological clock that predicts not only sample age but also future mortality rates and lifespan. This study with 20 genotypes and 87 metabolites, while relatively small in scope, establishes strong proof of principle for the fly as a powerful experimental model to test hypotheses about biomarkers and aging and provides further evidence for the potential value of metabolomic profiles as biomarkers of aging.
Asunto(s)
Drosophila melanogaster , Metaboloma , Envejecimiento/genética , Animales , Biomarcadores/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidad/genética , Metaboloma/genéticaRESUMEN
BACKGROUND: Placental malaria has been associated with increased cord blood maternal microchimerism (MMc), which in turn may affect susceptibility to malaria in the offspring. We sought to determine the impact of maternal peripheral Plasmodium falciparum parasitemia during pregnancy on MMc and to determine whether maternal cells expand during primary parasitemia in the offspring. METHODS: We conducted a nested cohort study of maternal-infant pairs from a prior pregnancy malaria chemoprevention study. Maternal microchimerism was measured by quantitative polymerase chain reaction targeting a maternal-specific marker in genomic DNA from cord blood, first P falciparum parasitemia, and preparasitemia. Logistic and negative binomial regression were used to assess the impact of maternal peripheral parasitemia, symptomatic malaria, and placental malaria on cord blood MMc. Generalized estimating equations were used to assess predictors of MMc during infancy. RESULTS: Early maternal parasitemia was associated with increased detection of cord blood MMc (adjusted odds ratioâ =â 3.91, Pâ =â .03), whereas late parasitemia, symptomatic malaria, and placental malaria were not. The first parasitemia episode in the infant was not associated with increased MMc relative to preparasitemia. CONCLUSIONS: Maternal parasitemia early in pregnancy may increase the amount of MMc acquired by the fetus. Future work should investigate the impact of this MMc on immune responses in the offspring.
Asunto(s)
Quimerismo/estadística & datos numéricos , Malaria Falciparum/genética , Enfermedades Placentarias/genética , Plasmodium falciparum/aislamiento & purificación , Complicaciones Parasitarias del Embarazo/genética , Adolescente , Adulto , Estudios de Cohortes , Susceptibilidad a Enfermedades , Femenino , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Salud Materna , Parasitemia/epidemiología , Placenta/parasitología , Enfermedades Placentarias/epidemiología , Embarazo , Complicaciones Parasitarias del Embarazo/epidemiologíaRESUMEN
Dried blood spots (DBS) are widely utilized as part of universal newborn screening and as a means of transporting samples from field sites. We use DBS from African field sites to assess for rare maternal-fetal cell exchange during pregnancy known as microchimerism. We aimed to develop a protocol to maximize the quantity of high-quality genomic DNA (gDNA) extracted from DBS. The total gDNA yield obtained from control DBS utilizing a Qiagen-based protocol and a Chelex® 100 resin-based protocol was first compared. Variations of the Chelex® protocol were subsequently tested to develop an optimized protocol. The gDNA was quantified by qPCR targeting the human beta-globin gene. DNA yield for a given experimental condition was normalized to a Chelex® control performed on the same day, and the total yields were compared using a Student's t-test. The control Chelex® protocol yielded 590% more DNA than the QIAamp® DNA Blood Mini Kit . The absolute efficiency of the control Chelex® protocol was 54%, compared to an absolute efficiency of 9% for the QIAamp® DNA Blood Mini Kit. Modification of the Chelex® protocol to include a second heat precipitation from the same DBS increased the gDNA yield by 29% (P < 0.001). Our optimized protocol including this modification increased the absolute efficiency of extraction to 68%. The gDNA extracted using the Chelex® protocol was stable through repeated freeze-thaw cycles. In a mock microchimerism experiment, rare donor alleles at a frequency of 10 in 100 000 could be identified in gDNA from DBS extracted using the optimized Chelex® protocol. Our findings may be of significance for a diverse range of applications that utilize DBS and require high-quality DNA, including newborn screening programs, pathogen and drug resistance screening from remote field sites, forensics, and rare allele detection.