Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plants (Basel) ; 11(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35214815

RESUMEN

The banana is a staple food crop and represents an important trade commodity for millions of people living in tropical and subtropical countries. The most important edible banana clones originated from natural crosses between diploid Musa balbisiana and various subspecies of M. acuminata. It is worth mentioning that evolution and speciation in the Musaceae family were accompanied by large-scale chromosome structural changes, indicating possible reasons for lower fertility or complete sterility of these vegetatively propagated clones. Chromosomal changes, often accompanied by changes in genome size, are one of the driving forces underlying speciation in plants. They can clarify the genomic constitution of edible bananas and shed light on their origin and on diversification processes in members of the Musaceae family. This article reviews the development of molecular cytogenetic approaches, ranging from classical fluorescence in situ hybridization (FISH) using common cytogenetic markers to oligo painting FISH. We discuss differences in genome size and chromosome number across the Musaceae family in addition to the development of new chromosome-specific cytogenetic probes and their use in genome structure and comparative karyotype analysis. The impact of these methodological advances on our knowledge of Musa genome evolution at the chromosomal level is demonstrated. In addition to citing published results, we include our own new unpublished results and outline future applications of molecular cytogenetics in banana research.

2.
Front Plant Sci ; 12: 791303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145533

RESUMEN

Chickpea (Cicer arietinum L.) is one of the main sources of plant proteins in the Indian subcontinent and West Asia, where two different morphotypes, desi and kabuli, are grown. Despite the progress in genome mapping and sequencing, the knowledge of the chickpea genome at the chromosomal level, including the long-range molecular chromosome organization, is limited. Earlier cytogenetic studies in chickpea suffered from a limited number of cytogenetic landmarks and did not permit to identify individual chromosomes in the metaphase spreads or to anchor pseudomolecules to chromosomes in situ. In this study, we developed a system for fast molecular karyotyping for both morphotypes of cultivated chickpea. We demonstrate that even draft genome sequences are adequate to develop oligo-fluorescence in situ hybridization (FISH) barcodes for the identification of chromosomes and comparative analysis among closely related chickpea genotypes. Our results show the potential of oligo-FISH barcoding for the identification of structural changes in chromosomes, which accompanied genome diversification among chickpea cultivars. Moreover, oligo-FISH barcoding in chickpea pointed out some problematic, most probably wrongly assembled regions of the pseudomolecules of both kabuli and desi reference genomes. Thus, oligo-FISH appears as a powerful tool not only for comparative karyotyping but also for the validation of genome assemblies.

3.
Genes (Basel) ; 11(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322080

RESUMEN

Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genoma de Planta , Lupinus/genética , Cromosomas Artificiales Bacterianos , Hibridación Fluorescente in Situ
4.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114462

RESUMEN

Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Musa/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Diploidia , Evolución Molecular , Cariotipo , Musa/genética , Fitomejoramiento , Tetraploidía , Translocación Genética , Triploidía
5.
Nat Commun ; 11(1): 4488, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901040

RESUMEN

Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.


Asunto(s)
Digitaria/genética , Grano Comestible/genética , África , Agricultura/métodos , Cambio Climático , Digitaria/clasificación , Domesticación , Grano Comestible/clasificación , Evolución Molecular , Variación Genética , Genoma de Planta , Anotación de Secuencia Molecular , Selección Genética , Especificidad de la Especie
6.
Front Plant Sci ; 11: 205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180787

RESUMEN

The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.

7.
Front Plant Sci ; 10: 1503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824534

RESUMEN

Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.

8.
Cytogenet Genome Res ; 151(2): 106-114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28297695

RESUMEN

Festulolium are hybrids between fescue (Festuca) and ryegrass (Lolium) species and combine high seed yield of ryegrasses with abiotic stress tolerance of fescues. Chromosomes of Festuca and Lolium present in Festulolium freely pair and recombine, which results in highly variable progeny where every single plant has a unique chromosome constitution. Thus, the stability of the genomic composition in Festulolium cultivars is an important issue. In this work, we used in situ hybridization to examine the genomic composition (understood as the proportion of parental genomes present) over 3 consecutive generations of propagation via outcrossing (the first one being the generation used for cultivar registration) of 3 Festulolium cultivars. Our analysis revealed that the genome composition largely differs among the plants from individual cultivars but appears to be relatively stable over the generations. A gradual shift in the genome composition towards Lolium observed in the early generations of hybrids appears to reach a plateau where the proportions of parental genomes become stabilized. Nevertheless, the proportion remains unbalanced to a certain extent (always in favor of the Lolium genome) in each cultivar. Our observations indicate a possibility to modulate genomic composition in hybrids by breeders' selection without a compromise on stability.


Asunto(s)
Festuca/genética , Genoma de Planta , Recombinación Homóloga , Lolium/genética , Aneuploidia , Cromosomas de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA