RESUMEN
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography-tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the 'Aroona' cultivar and 12 'Aroona' near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for 'Aroona' and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in 'Aroona' and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.
Asunto(s)
Glútenes/análisis , Glútenes/metabolismo , Triticum/metabolismo , Alelos , Secuencia de Aminoácidos , Electroforesis en Gel Bidimensional/métodos , Haplotipos , Peso Molecular , Fitomejoramiento/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Triticum/química , Triticum/genéticaRESUMEN
BACKGROUND: Within the complex wheat flour proteome, the gluten proteins have attracted most of the attention because of their importance in determining the functional properties of wheat flour doughs and their roles in human health conditions such as celiac disease and food allergies. However, certain non-gluten proteins also trigger immunological responses but may be present in flour in low amounts or obscured by the more abundant gluten proteins in two-dimensional gels of total protein preparations. METHODS: Non-gluten proteins were preferentially extracted from the flour with a dilute salt solution and separated by two-dimensional gel electrophoresis. Proteins in 173 gel spots were identified by tandem mass spectrometry after cleavage with trypsin or chymotrypsin. Transgenic wheat lines in which specific groups of gluten proteins were suppressed by RNA interference were used to estimate the amount of carry-over of gluten proteins in the salt-soluble protein fraction. RESULTS: Fifty-seven different types of non-gluten proteins were identified, including 14 types that are known or suspected immunogenic proteins. The predominant proteins in 18 gel spots were gluten proteins. Some of these also contained non-gluten proteins. Analysis of the salt-soluble proteins from a transgenic line in which omega-1,2 gliadins were eliminated by RNA interference indicated that certain omega-1,2 gliadins were present in large amounts in the salt-soluble fraction and obscured relatively small amounts of beta-amylase and protein disulfide isomerase. In comparison, analysis of a transgenic line in which alpha gliadins were absent revealed that glyceraldehyde-3 phosphate dehydrogenase was a moderately abundant protein that co-migrated with several alpha gliadins. CONCLUSIONS: In this study, we constructed a proteomic map of the non-gluten protein fraction of wheat flour from the US wheat Butte 86 that complements a proteomic map of the total flour proteins developed previously for the same cultivar. Knowing the identities of low abundance proteins in the flour as well as proteins that are hidden by some of the major gluten proteins on two-dimensional gels is critical for studies aimed at assessing the immunogenic potential of wheat flour and determining which wheat proteins that should be targeted in future gene editing experiments to reduce the immunogenic potential of wheat flour.
RESUMEN
The alpha gliadins are a group of more than 20 proteins with very similar sequences that comprise about 15%-20% of the total flour protein and contribute to the functional properties of wheat flour dough. Some alpha gliadins also contain immunodominant epitopes that trigger celiac disease, a chronic autoimmune disease that affects approximately 1% of the worldwide population. In an attempt to reduce the immunogenic potential of wheat flour from the U.S. spring wheat cultivar Butte 86, RNA interference was used to silence a subset of alpha gliadin genes encoding proteins containing celiac disease epitopes. Two of the resulting transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry. Although the RNA interference construct was designed to target only some alpha gliadin genes, all alpha gliadins were effectively silenced in the transgenic plants. In addition, some off-target silencing of high molecular weight glutenin subunits was detected in both transgenic lines. Compensatory effects were not observed within other gluten protein classes. Reactivities of IgG and IgA antibodies from a cohort of patients with celiac disease toward proteins from the transgenic lines were reduced significantly relative to the nontransgenic line. Both mixing properties and SDS sedimentation volumes suggested a decrease in dough strength in the transgenic lines when compared to the control. The data suggest that it will be difficult to selectively silence specific genes within families as complex as the wheat alpha gliadins. Nonetheless, it may be possible to reduce the immunogenic potential of the flour and still retain many of the functional properties essential for the utilization of wheat.
RESUMEN
Although the economic value of wheat flour is determined by the complement of gluten proteins, these proteins have been challenging to study because of the complexity of the major protein groups and the tremendous sequence diversity among wheat cultivars. The completion of a high-quality wheat genome sequence from the reference wheat Chinese Spring recently facilitated the assembly and annotation of a complete set of gluten protein genes from a single cultivar, making it possible to link individual proteins in the flour to specific gene sequences. In a proteomic analysis of total wheat flour protein from Chinese Spring using quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry, gliadins or low-molecular-weight glutenin subunits were identified as the predominant proteins in 72 protein spots. Individual spots were associated with 40 of 56 Chinese Spring gene sequences, including 16 of 26 alpha gliadins, 10 of 11 gamma gliadins, six of seven omega gliadins, one of two delta gliadins, and nine of ten LMW-GS. Most genes that were not associated with protein spots were either expressed at low levels in endosperm or encoded proteins with high similarity to other proteins. A wide range of protein accumulation levels were observed and discrepancies between transcript levels and protein levels were noted. This work together with similar studies using other commercial cultivars should provide new insight into the molecular basis of wheat flour quality and allergenic potential.
Asunto(s)
Gliadina/genética , Triticum/genética , Electroforesis en Gel Bidimensional , Harina , Genoma de Planta , Gliadina/análisis , Gliadina/química , Gliadina/metabolismo , Poliploidía , Proteómica , Estándares de Referencia , Espectrometría de Masas en Tándem , Triticum/metabolismoRESUMEN
BACKGROUND: Omega-5 gliadins are a group of highly repetitive gluten proteins in wheat flour encoded on the 1B chromosome of hexaploid wheat. These proteins are the major sensitizing allergens in a severe form of food allergy called wheat-dependent exercise-induced anaphylaxis (WDEIA). The elimination of omega-5 gliadins from wheat flour through biotechnology or breeding approaches could reduce the immunogenic potential and adverse health effects of the flour. RESULTS: A mutant line missing low-molecular weight glutenin subunits encoded at the Glu-B3 locus was selected previously from a doubled haploid population generated from two Korean wheat cultivars. Analysis of flour from the mutant line by 2-dimensional gel electrophoresis coupled with tandem mass spectrometry revealed that the omega-5 gliadins and several gamma gliadins encoded by the closely linked Gli-B1 locus were also missing as a result of a deletion of at least 5.8 Mb of chromosome 1B. Two-dimensional immunoblot analysis of flour proteins using sera from WDEIA patients showed reduced IgE reactivity in the mutant relative to the parental lines due to the absence of the major omega-5 gliadins. However, two minor proteins showed strong reactivity to patient sera in both the parental and the mutant lines and also reacted with a monoclonal antibody against omega-5 gliadin. Analysis of the two minor reactive proteins by mass spectrometry revealed that both proteins correspond to omega-5 gliadin genes encoded on chromosome 1D that were thought previously to be pseudogenes. CONCLUSIONS: While breeding approaches can be used to reduce the levels of the highly immunogenic omega-5 gliadins in wheat flour, these approaches are complicated by the genetic linkage of different classes of gluten protein genes and the finding that omega-5 gliadins may be encoded on more than one chromosome. The work illustrates the importance of detailed knowledge about the genomic regions harboring the major gluten protein genes in individual wheat cultivars for future efforts aimed at reducing the immunogenic potential of wheat flour.
Asunto(s)
Alérgenos/inmunología , Harina , Gliadina/inmunología , Triticum/inmunología , Hipersensibilidad al Trigo/inmunología , Alérgenos/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Electroforesis en Gel Bidimensional , Epítopos/genética , Epítopos/inmunología , Genoma de Planta , Gliadina/genética , Humanos , Inmunoglobulina E/inmunología , Espectrometría de Masas , Mutación , Fitomejoramiento , Poliploidía , Triticum/genéticaRESUMEN
Wheat gliadins are a complex group of proteins that contribute to the functional properties of wheat flour doughs and contain epitopes that are relevant for celiac disease (CD) and wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, we extracted ethanol-soluble gliadin fractions from flour of the Korean bread wheat cultivar Keumkang. Proteins were separated by 2-dimensional gel electrophoresis (2-DE) using a pI range of 6-11 in the first dimension and subjected to tandem mass spectrometry. α-, γ-, and ω-gliadins were identified as the predominant proteins in 31, 28, and one 2-DE spot, respectively. An additional six ω-gliadins were identified in a separate experiment in which a pI range of 3-11 was used for protein separation. We analyzed the composition of CD- and WDEIA-relevant epitopes in the gliadin sequences from Keumkang flour, demonstrating the immunogenic potential of this cultivar. Detailed knowledge about the complement of gliadins accumulated in Keumkang flour provides the background necessary to devise either breeding or biotechnology strategies to improve the functional properties and reduce the adverse health effects of the flour.