RESUMEN
Despite the curative approaches developed against myocardial infarction, cardiac cell death causes dysfunctional heart contractions that depend on the extent of the ischemic area and the reperfusion period. Cardiac regeneration may allow neovascularization and limit the ventricular remodeling caused by the scar tissue. We have previously found that large extracellular vesicles, carrying Sonic Hedgehog (lEVs), displayed proangiogenic and antioxidant properties, and decreased myocardial infarction size when administrated by intravenous injection. We propose to associate lEVs with pharmacology active microcarriers (PAMs) to obtain a combined cardioprotective and regenerative action when administrated by intracardiac injection. PAMs made of poly-D,L-lactic-coglycolic acid-poloxamer 188-poly-D,L-lactic-coglycolic acid and covered by fibronectin/poly-D-lysine provided a biodegradable and biocompatible 3D biomimetic support for the lEVs. When compared with lEVs alone, lEVs-PAMs constructs possessed an enhanced in vitro pro-angiogenic ability. PAMs were designed to continuously release encapsulated hepatocyte growth factor (PAMsHGF) and thus, locally increase the activity of the lEVs by the combined anti-fibrotic properties and regenerative properties. Intracardiac administration of either lEVs alone or lEVs-PAMsHGF improved cardiac function in a similar manner, in a rat model of ischemia-reperfusion. Moreover, lEVs alone or the IEVs-PAMsHGF induced arteriogenesis, but only the latter reduced tissue fibrosis. Taken together, these results highlight a promising approach for lEVs-PAMsHGF in regenerative medicine for myocardial infarction.
Asunto(s)
Portadores de Fármacos/farmacología , Factor de Crecimiento de Hepatocito , Infarto del Miocardio/tratamiento farmacológico , Poloxámero/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Regeneración , Animales , Antioxidantes/farmacología , Biomimética/métodos , Cardiotónicos/farmacología , Excipientes/farmacología , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Microesferas , Miocardio/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Regeneración/efectos de los fármacos , Regeneración/fisiologíaRESUMEN
Polysaccharides have received a lot of attention in biomedical research for their high potential as scaffolds owing to their unique biological properties. Fibrillar scaffolds made of chitosan demonstrated high promise in tissue engineering, especially for skin. As far as bone regeneration is concerned, curdlan (1,3-ß-glucan) is particularly interesting as it enhances bone growth by helping mesenchymal stem cell adhesion, by favoring their differentiation into osteoblasts and by limiting the osteoclastic activity. Therefore, we aim to combine both chitosan and curdlan polysaccharides in a new scaffold for bone regeneration. For that purpose, curdlan was electrospun as a blend with chitosan into a fibrillar scaffold. We show that this novel scaffold is biodegradable (8% at two weeks), exhibits a good swelling behavior (350%) and is non-cytotoxic in vitro. In addition, the benefit of incorporating curdlan in the scaffold was demonstrated in a scratch assay that evidences the ability of curdlan to express its immunomodulatory properties by enhancing cell migration. Thus, these innovative electrospun curdlan-chitosan scaffolds show great potential for bone tissue engineering.
RESUMEN
Polymeric, biodegradable, microspheres (MS) presenting a biomimetic surface of extracellular matrix (ECM) proteins are currently used for transporting cells and/or encapsulated proteins for regenerative medicine studies. They can be made of (lactic-co-glycolic acid) (PLGA) or of a more hydrophilic PLGA-P188 (Poloxamer188)-PLGA polymer allowing for the complete release of the therapeutic proteins. They promote stem cell adhesion, cell survival and differentiation after transplantation. Although the biological effectiveness of these microcarriers is established, a detailed understanding of the protein and cell interactions with the microcarrier surface remain unclear due to a lack of information of their surface properties. The aim of this study was to characterize the physicochemical properties of two polymeric MS systems and determine the effect of laminin and poly-d-lysine coated microcarriers on stem cell adhesion, survival and neuronal differentiation. The hydrophobicity and topography of PLGA MS promoted protein adsorption and the stem cells quickly adhered and spread on the surface of these microcarriers. In contrast less proteins adsorbed onto PLGA-P188-PLGA MS and although cells adhered to these microcarriers, they remained round and did not spread on their surface. Despite these early-stage differences, our results suggest that the nature of the MS does not strongly influence the long-term cell behavior. The cells exhibit the same cell number, differentiation profile and ability to secrete ECM molecules regardless of the type of microcarrier used. Likely the ECM molecules that form a microenvironment around both of these 3D microcarrier/cell constructs over time play a role in this converging cell behavior. We have thus furthered our understanding of the physicochemical properties of polymeric cell carriers affecting stem cell behavior to help tailor suitable microcarriers for neuroregenerative applications.
Asunto(s)
Células Madre Mesenquimatosas , Adhesión Celular , Moléculas de Adhesión Celular , Células Cultivadas , Ácido Láctico , Microesferas , Copolímero de Ácido Poliláctico-Ácido PoliglicólicoRESUMEN
For Huntington's disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) inhibition using siRNA in the GABAergic differentiation of marrow-isolated adult multilineage inducible (MIAMI) cells, a subpopulation of MSCs. We further combined these cells to laminin-coated poly(lactic-co-glycolic acid) PLGA pharmacologically active microcarriers (PAMs) delivering BDNF in a controlled fashion to stimulate the survival and maintain the differentiation of the cells. The PAMs/cells complexes were then transplanted in an ex vivo model of HD. Using Sonic Hedgehog (SHH) and siREST, we obtained GABAergic progenitors/neuronal-like cells, which were able to secrete HGF, SDF1 VEGFa and BDNF, of importance for HD. GABA-like progenitors adhered to PAMs increased their mRNA expression of NGF/VEGFa as well as their secretion of PIGF-1, which can enhance reparative angiogenesis. In our ex vivo model of HD, they were successfully transplanted while attached to PAMs and were able to survive and maintain this GABAergic neuronal phenotype. Together, our results may pave the way for future research that could improve the success of cell-based therapy for HDs.
RESUMEN
Glioblastoma (GB) is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual GB cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and may favor recurrence. Tools for eliminating these cells without damaging the brain microenvironment are urgently required. We propose a strategy involving the implantation, into the tumor bed after resection, of a scaffold to concentrate and trap these cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery. We used bacterial cellulose (BC), an easily synthesized and modifiable random nanofibrous biomaterial, to make the trap. We showed that the structure of BC membranes was ideal for trapping tumor cells and that BC implants were biocompatible with brain parenchyma. We also demonstrated the visibility of BC on magnetic resonance imaging, making it possible to follow its fate in clinical situations and to define the target volume for stereotactic radiosurgery more precisely. Furthermore, BC membranes can be loaded with chemoattractants, which were released and attracted tumor cells in vitro. This is of particular interest for trapping GB cells infiltrating tissues within a few centimeters of the resection cavity. Our data suggest that BC membranes could be a scaffold of choice for implantation after surgical resection to trap residual GB cells. STATEMENT OF SIGNIFICANCE: Glioblastoma is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual tumor cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and contribute to the risk of recurrence. Finding tools to eliminate these cells without damaging the brain microenvironment is a real challenge. We propose a strategy involving the implantation, into the walls of the surgical resection cavity, of a scaffold to concentrate and trap the residual tumor cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery.
Asunto(s)
Materiales Biocompatibles , Neoplasias Encefálicas , Glioblastoma , Imagen por Resonancia Magnética , Membranas Artificiales , Nanofibras , Radiocirugia , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Celulosa/química , Celulosa/uso terapéutico , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Masculino , Nanofibras/química , Nanofibras/uso terapéutico , Ratas , Ratas Sprague-Dawley , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiaciónRESUMEN
We propose a regenerative solution in the treatment of critical limb ischaemia (CLI). Poly-lactic/glycolic acid microcarriers were prepared and coated with laminin to be sterilized through γ-irradiation of 25 kGy at low temperature. Stromal vascular fraction (SVF) cells were extracted through enzymatic digestion of adipose tissue. Streptozotocin-induced diabetic mice underwent arteriotomy and received an administration of SVF cells combined or not with biomimetic microcarriers. Functional evaluation of the ischaemic limb was then reported, and tissue reperfusion was evaluated through fluorescence molecular tomography. Microcarriers were stable and functional after γ-irradiation until at least 12 months of storage. Mice that received an injection of SVF cells in the ischaemic limb have 22% of supplementary blood supply within this limb 7 days after surgery compared with vehicle, whereas no difference was observed at Day 14. With the combined therapy, the improvement of blood flow is significantly higher compared with vehicle, of about 31% at Day 7 and of about 11% at Day 14. Injection of SVF cells induces a significant 27% decrease of necrosis compared with vehicle. This effect is more important when SVF cells were mixed with biomimetic microcarriers: -37% compared with control. Although SVF cells injection leads to a non-significant 22% proprioception recovery, the combined therapy induces a significant recovery of about 27% compared with vehicle. We show that the combination of SVF cells from adipose tissue with laminin-coated poly-lactic/glycolic acid microcarriers is efficient for critical limb ischaemia therapy in a diabetic mouse model.
Asunto(s)
Tejido Adiposo/citología , Materiales Biomiméticos/farmacología , Isquemia/terapia , Microesferas , Neovascularización Fisiológica/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Adulto , Animales , Adhesión Celular , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/patología , Laminina/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Peso Molecular , Necrosis , Tamaño de la Partícula , Perfusión , Propiocepción , Flujo Sanguíneo Regional , Electricidad Estática , Células del Estroma/efectos de los fármacosRESUMEN
Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & ß, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system. STATEMENT OF SIGNIFICANCE: Combinatorial tissue engineering strategies for the central nervous system are scarce. We developed and characterized a novel injectable non-toxic stem cell and protein delivery system providing regenerative cues for central nervous system disorders. BDNF, a neurotrophic factor with a wide-range effect, was nanoprecipitated to maintain its structure and released in a sustained manner from novel polymeric microcarriers. The combinatorial 3D support, provided by fibronectin-microcarriers and the hydrogel, to the mesenchymal stem cells guided the cells towards a neuronal differentiation and enhanced their tissue repair properties by promoting growth factors and cytokine secretion. The long-term release of physiological doses of bioactive BDNF, combined to the enhanced secretion of tissue repair factors from the stem cells, constitute a promising therapeutic approach.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células Madre Mesenquimatosas/citología , Microesferas , Neuronas/citología , Proteoma/metabolismo , Anciano , Materiales Biocompatibles/farmacología , Forma de la Célula/efectos de los fármacos , Precipitación Química , Liberación de Fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Derivados de la Hipromelosa/química , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Nanopartículas/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reología , Silanos/químicaRESUMEN
UNLABELLED: Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. SIGNIFICANCE: Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Portadores de Fármacos/farmacología , Células-Madre Neurales/trasplante , Neurotrofina 3/farmacología , Trastornos Parkinsonianos/terapia , Trasplante de Células Madre , Adulto , Animales , Supervivencia Celular/efectos de los fármacos , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Células Inmovilizadas/trasplante , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , RatasRESUMEN
Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs-VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.
Asunto(s)
Isquemia Encefálica/complicaciones , Portadores de Fármacos/química , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Conducta Animal , Vasos Sanguíneos/efectos de los fármacos , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Laminina/farmacología , Imagen por Resonancia Magnética , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/fisiopatología , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
For tissue-engineering studies of the infarcted heart it is essential to identify a source of cells that may provide cardiomyocyte progenitors, which is easy to amplify, accessible in adults, and allowing autologous grafts. Preclinical studies have shown that human adipose-derived stem cells (ADSCs) can differentiate into cardiomyocyte-like cells and improve heart function in myocardial infarction. We have developed pharmacologically active microcarriers (PAMs) which are biodegradable and biocompatible polymeric microspheres conveying cells on their biomimetic surface, therefore providing an adequate three-dimensional (3D) microenvironment. Moreover, they can release a growth factor in a prolonged manner. In order to implement ADSCs and PAMs for cardiac tissue engineering we first defined the biomimetic surface by studying the influence of matrix molecules laminin (LM) and fibronectin (FN), in combination with growth factors present in the cardiogenic niche, to further enhance the in vitro cardiac differentiation of ADSCs. We demonstrated that LM increased the expression of cardiac markers (Nkx2.5, GATA4, MEF2C) by ADSCs after 2 weeks in vitro. Interestingly, our results suggest that the 3D support provided by PAMs with a LM biomimetic surface (LM-PAMs) further enhanced the expression of cardiac markers and induced the expression of a more mature contractile protein, cardiac troponin I, compared with the 2D differentiating conditions after only 1 week in culture. The enrichment of the growth-factor cocktail with TGF-ß1 potentiated the cardiomyogenic differentiation. These results suggest that PAMs offering a LM biomimetic surface may be efficiently used for applications combining adult stem cells in tissue-engineering strategies of the ischemic heart.
Asunto(s)
Tejido Adiposo/citología , Linaje de la Célula/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Laminina/farmacología , Microesferas , Miocitos Cardíacos/citología , Células Madre/citología , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
The challenge of tissue engineering of the infarcted heart is how to improve stem cell engraftment, survival, homing, and differentiation for myocardial repair. We here propose to integrate human adipose-derived stem cells (ADSCs) and pharmacologically active microcarriers (PAMs), a three-dimensional (3D) carrier of cells and growth factors, into an injectable hydrogel (HG), to obtain a system that stimulates the survival and/or differentiation of the grafted cells toward a cardiac phenotype. PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) (PLGA) microspheres conveying cells on their 3D surface that deliver continuously and in a controlled manner a growth factor (GF) acting on the transported cells and on the microenvironment to improve engraftment. The choice of the appropriate GF and its protection during the formulation process and delivery are essential. In this study two GFs, hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1), have been encapsulated under a solid state in order to limit their interaction with the polymer and conserve their integrity. GF precipitation conditions and release profile from PAMs have been first investigated before combining them to ADSCs. The released IGF-1 and HGF induced the protein synthesis of cardiac differentiation markers GATA4, Nkx2.5, cTnI and CX43 after 1week in vitro. Moreover, the GFs accelerated cell cycle progression, as suggested by the increased expression of Cyclin D1 mRNA and the widespread distribution of Ki67 protein. Integrating PAMs within the thermosensitive P407 hydrogel increased their elastic properties but decreased the transcription of most cardiac markers. In contrast, CX43 expression increased in ADSC-PAM-GF complexes embedded within the hydrogel compared to the ADSCs cultured alone in the absence of P407. These results suggest that particulate scaffolds releasing HGF and IGF-1 may be beneficial for applications in tissue-engineering strategies for myocardial repair and the association with a P407 hydrogel can increase substrate elasticity and junction connections in ADSCs.
Asunto(s)
Factor de Crecimiento de Hepatocito/administración & dosificación , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Miocardio/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tejido Adiposo/citología , Animales , Biomimética , Diferenciación Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Láctico/química , Ratones , Modelos Moleculares , Células 3T3 NIH , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células Madre/metabolismo , TemperaturaRESUMEN
The prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. We recently showed that marrow-isolated adult mutilineage inducible (MIAMI) cells, a subpopulation of human mesenchymal stromal cells (MSCs), can serve as cellular carriers of drug-loaded nanoparticles to brain tumors. However, the safety of MIAMI cells as cellular treatment vectors in glioma therapy must be evaluated, in particular their effect on glioma growth and their fate in a tumor environment. In this study, we showed that MIAMI cells were able to specifically migrate toward the orthotopic U87MG tumor model and did not influence its growth. In this model, MIAMI cells did not give rise to cells resembling endothelial cells, pericytes, cancer-associated fibroblasts (CAFs), or astrocytes. Despite these encouraging results, the effects of MIAMI cells may be glioma-dependent. MIAMI cells did not migrate toward the orthotopic Lab1 GB and they can induce the proliferation of other glioma cell lines in vitro. Furthermore, a fraction of MIAMI cells was found to be in a state of proliferation in the U87MG tumor environment. These findings indicate that the use of MIAMI cells as cellular treatment vectors for malignant tumors must be controlled. These cells may be used as "suicide vectors": vectors for killing not only tumor cells but themselves.
Asunto(s)
Células de la Médula Ósea/citología , Neoplasias Encefálicas , Glioma , Células Madre Mesenquimatosas/citología , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Femenino , Citometría de Flujo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones DesnudosRESUMEN
Multipotent mesenchymal stromal cells (MSCs) raise great interest for brain cell therapy due to their ease of isolation from bone marrow, their immunomodulatory and tissue repair capacities, their ability to differentiate into neuronal-like cells and to secrete a variety of growth factors and chemokines. In this study, we assessed the effects of a subpopulation of human MSCs, the marrow-isolated adult multilineage inducible (MIAMI) cells, combined with pharmacologically active microcarriers (PAMs) in a rat model of Parkinson's disease (PD). PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) microspheres, coated by a biomimetic surface and releasing a therapeutic protein, which acts on the cells conveyed on their surface and on their microenvironment. In this study, PAMs were coated with laminin and designed to release neurotrophin 3 (NT3), which stimulate the neuronal-like differentiation of MIAMI cells and promote neuronal survival. After adhesion of dopaminergic-induced (DI)-MIAMI cells to PAMs in vitro, the complexes were grafted in the partially dopaminergic-deafferented striatum of rats which led to a strong reduction of the amphetamine-induced rotational behavior together with the protection/repair of the nigrostriatal pathway. These effects were correlated with the increased survival of DI-MIAMI cells that secreted a wide range of growth factors and chemokines. Moreover, the observed increased expression of tyrosine hydroxylase by cells transplanted with PAMs may contribute to this functional recovery.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Microesferas , Células Madre Multipotentes/citología , Enfermedad de Parkinson/terapia , Células del Estroma/citología , Ingeniería de Tejidos/métodos , Animales , Conducta Animal , Diferenciación Celular/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ácido Láctico/química , Laminina/química , Neurotrofina 3/química , Neurotrofina 3/farmacología , Enfermedad de Parkinson/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-DawleyRESUMEN
The prognosis of patients with malignant glioma remains extremely poor, despite surgery and improvements in radio- and chemo-therapies. Nanotechnologies represent great promise in glioma therapy as they protect therapeutic agent and allow its sustained release. However, new paradigms allowing tumor specific targeting and extensive intratumoral distribution must be developed to efficiently deliver nanoparticles (NPs). Knowing the tropism of mesenchymal stem cells (MSCs) for brain tumors, the aim of this study was to obtain the proof of concept that these cells can be used as NP delivery vehicles. Two types of NPs loaded with coumarin-6 were investigated: poly-lactic acid NPs (PLA-NPs) and lipid nanocapsules (LNCs). The results show that these NPs can be efficiently internalized into MSCs while cell viability and differentiation are not affected. Furthermore, these NP-loaded cells were able to migrate toward an experimental human glioma model. These data suggest that MSCs can serve as cellular carriers for NPs in brain tumors.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Células Madre Mesenquimatosas/citología , Nanopartículas/administración & dosificación , Animales , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ácido Láctico/administración & dosificación , Ácido Láctico/química , Lípidos/administración & dosificación , Lípidos/química , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Nanocápsulas/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Poliésteres , Polímeros/administración & dosificación , Polímeros/químicaRESUMEN
Mesenchymal stem cells (MSC) may transdifferentiate into neural cells in vitro under the influence of matrix molecules and growth factors present in neurogenic niches. However, further experiments on the behavior of such stem cells remain to be done in vivo. In this study, rat MSC (rMSC) have been grafted in a neurogenic environment of the rat brain, the subventricular zone (SVZ), in order to detect and follow their migration using superparamagnetic iron oxide (SPIO) nanoparticles. We sought to characterize the potential effect of iron loading on the behavior of rMSC as well as to address the potential of rMSC to migrate when exposed to the adequate brain microenvironment. 1-hydroxyethylidene-1.1-bisphosphonic acid (HEDP)-coated SPIO nanoparticles efficiently labeled rMSC without significant adverse effects on cell viability and on the in vitro differentiation potential. In opposition to iron-labeled rat neural stem cells (rNSC), used as a positive control, iron-labeled rMSC did not respond to the SVZ microenvironment in vivo and did not migrate, unless a mechanical lesion of the olfactory bulb was performed. This confirmed the known potential of iron-labeled rMSC to migrate toward lesions and, as far as we know, this is the first study describing such a long distance migration from the SVZ toward the olfactory bulb through the rostral migratory stream (RMS).
Asunto(s)
Diferenciación Celular/fisiología , Ácido Etidrónico , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Nanopartículas , Óxidos , Animales , Encéfalo/citología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Colorantes , Medios de Contraste , Embrión de Mamíferos/citología , Hierro , Imagen por Resonancia Magnética/métodos , Neuronas/metabolismo , Neuronas/fisiología , Bulbo Olfatorio/lesiones , Ratas , Ratas Sprague-DawleyRESUMEN
To improve the outcome of foetal dopaminergic cell transplantation for the treatment of Parkinson's disease, pharmacologically active microcarriers (PAM) were developed. PAM are able to convey cells on their surface and release a growth factor to improve cell survival, differentiation and integration after brain implantation. Lysozyme-releasing PAM were first produced and characterized. They served as a model system for the development of glial cell line-derived neurotrophic factor (GDNF)-releasing PAM conveying foetal ventral mesencephalic (FVM) cells. The effects of the intrastriatal implantation of this system were studied in hemiparkinsonian rats during a 6-week period. This study reports on the degradation of coated and non-coated PAM and the release of lysozyme and of biologically active GDNF for 42 days. Unloaded and GDNF-loaded PAM conveying FVM cells allowed a high improvement of the grafted cell survival and of fibre outgrowth, when compared to the cells transplanted alone. The animals receiving the PAM showed an earlier improvement in amphetamine-induced rotational behaviour compared to animals receiving FVM cells only; behaviour that appears to be more regular and stable with the GDNF-releasing PAM. The use of PAM to convey foetal cells is thus an efficient strategy for cell therapy in neurodegenerative diseases, as it allows improvement of cell survival and fibre outgrowth inducing a rapid recovery of behaviour using only low amounts of cells.
Asunto(s)
Materiales Biocompatibles/química , Encéfalo/embriología , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular , Supervivencia Celular , Femenino , Microesferas , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Ratas , Ratas Sprague-Dawley , Células Madre/citologíaRESUMEN
The transplantation of fetal ventral mesencephalic (FVM) cell suspensions into the brain striatal system is an alternative approach for the treatment of Parkinson's disease (PD). However, one objection to this procedure is the relatively poor survival of implanted cells. Attempts have been made to improve the survival of grafted dopaminergic neurons using glial cell line-derived neurotrophic factor (GDNF). Nevertheless, the clinical application of GDNF is limited, due to the difficulties in administering a protein to the brain tissue and due to the ubiquity of its receptor, thus leading to neurological side effects. A strategy to deliver GDNF in the brain based on the intracerebral implantation of biodegradable poly(D,L-lactic acid-co-glycolic acid) sustained release microspheres has been developed. Such microparticles can be easily implanted by sterotaxy in precise and functional areas of the brain without causing damage to the surrounding tissue. Moreover, the release profile of the GDNF-loaded microspheres showed a sustained release over 56 days of biologically active GDNF at clinically relevant doses. The present study shows that the implantation of GDNF-loaded microspheres at a distance to the site of FVM cells in the 6-hydroxydopamine-lesioned rat model of PD improves dopaminergic graft survival and function. Furthermore, the unloaded and the GDNF-loaded microspheres, when they are mixed with FVM cells, may provide a mechanical support and a 3D environment inducing differentiation and increased function of dopaminergic neurons. Taken together, these results show that GDNF microspheres represent an efficient delivery system for cell transplantation studies.
Asunto(s)
Cuerpo Estriado/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Supervivencia de Injerto , Mesencéfalo/citología , Animales , Biodegradación Ambiental , Cuerpo Estriado/embriología , Inmunohistoquímica , Mesencéfalo/embriología , Microesferas , Ratas , Ratas Sprague-DawleyRESUMEN
We report here that curative treatment of the multiple sclerosis paradigm, chronic relapsing experimental autoimmune encephalomyelitis (EAE) of the Lewis rat, by 1,25-dihydroxyvitamin D(3 )(1,25-D3) leads to a rapid clinical improvement accompanied by an inhibition of CD4, MHC class II and type II nitric oxide synthase (NOS II) expression in the posterior areas of the central nervous system (CNS). In contrast, the hormone has no effect on transforming growth factor-beta1 transcripts. Computer analysis of the NOS II promoter, expressed by microglia and astrocytes, reveals consensus sequence for vitamin D receptor binding, emphasizing the idea that 1,25-D3 may regulate some aspects of EAE by acting directly on CNS constituent cells. We also demonstrate that vitamin D deprivation leads to minimal effects on the kinetic profile of EAE accompanied by a moderate exacerbation of the clinical symptoms. Interestingly, curative treatment of vitamin D-deprived rats with a non-toxic-1,25-D3 analogue (MC1288) strongly inhibited EAE symptoms, thus promulgating the potential interest of such compounds in the management of multiple sclerosis.