Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38989630

RESUMEN

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Asunto(s)
Enfermedad de Alzheimer , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Magnetoencefalografía/normas , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/fisiopatología , Masculino , Femenino , Anciano , Modelos Neurológicos , Teorema de Bayes
2.
Neuropsychopharmacology ; 49(2): 368-376, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37402765

RESUMEN

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Síndrome de DiGeorge , Niño , Humanos , Adolescente , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/genética , Cognición , Factores de Riesgo
3.
Hum Brain Mapp ; 44(17): 5624-5640, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668332

RESUMEN

Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.


Asunto(s)
Encefalopatías , Encéfalo , Humanos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Mapeo Encefálico/métodos
4.
BMJ Open ; 12(12): e055135, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521898

RESUMEN

INTRODUCTION: With the pressing need to develop treatments that slow or stop the progression of Alzheimer's disease, new tools are needed to reduce clinical trial duration and validate new targets for human therapeutics. Such tools could be derived from neurophysiological measurements of disease. METHODS AND ANALYSIS: The New Therapeutics in Alzheimer's Disease study (NTAD) aims to identify a biomarker set from magneto/electroencephalography that is sensitive to disease and progression over 1 year. The study will recruit 100 people with amyloid-positive mild cognitive impairment or early-stage Alzheimer's disease and 30 healthy controls aged between 50 and 85 years. Measurements of the clinical, cognitive and imaging data (magnetoencephalography, electroencephalography and MRI) of all participants will be taken at baseline. These measurements will be repeated after approximately 1 year on participants with Alzheimer's disease or mild cognitive impairment, and clinical and cognitive assessment of these participants will be repeated again after approximately 2 years. To assess reliability of magneto/electroencephalographic changes, a subset of 30 participants with mild cognitive impairment or early-stage Alzheimer's disease will also undergo repeat magneto/electroencephalography 2 weeks after baseline. Baseline and longitudinal changes in neurophysiology are the primary analyses of interest. Additional outputs will include atrophy and cognitive change and estimated numbers needed to treat each arm of simulated clinical trials of a future disease-modifying therapy. ETHICS AND DATA STATEMENT: The study has received a favourable opinion from the East of England Cambridge Central Research Ethics Committee (REC reference 18/EE/0042). Results will be disseminated through internal reports, peer-reviewed scientific journals, conference presentations, website publication, submission to regulatory authorities and other publications. Data will be made available via the Dementias Platform UK Data Portal on completion of initial analyses by the NTAD study group.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Longitudinales , Reproducibilidad de los Resultados , Progresión de la Enfermedad , Estudios de Cohortes
5.
Front Neural Circuits ; 16: 630621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418839

RESUMEN

Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After decades of research, important advancements toward a central biomarker are still lacking. One of the missing pieces is a better understanding of how non-linear neural dynamics are altered in this patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients and healthy controls were analyzed in the framework of criticality. When biological systems like the brain are in a state of criticality, they are thought to be functioning at maximum efficiency (e.g., optimal communication and storage of information) and with maximum adaptability to incoming information. Here, we assessed the self-similarity and multifractality of resting-state brain signals recorded with magnetoencephalography in patients with schizophrenia patients and in matched controls. Schizophrenia patients had similar, although attenuated, patterns of self-similarity and multifractality values. Statistical tests showed that patients had higher values of self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital regions, indicative of less diverse singularities and reduced variability in the signal. In addition, supervised machine-learning, based on logistic regression, successfully discriminated the two groups using measures of self-similarity and multifractality as features. Our results provide new insights into the baseline cognitive functioning of schizophrenia patients by identifying key alterations of criticality properties in their resting-state brain data.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Encéfalo , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía/métodos
6.
Mol Psychiatry ; 27(4): 2282-2290, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079123

RESUMEN

Interest in the cerebellum is expanding given evidence of its contributions to cognition and emotion, and dysfunction in various psychopathologies. However, research into its genetic architecture and shared influences with liability for mental disorders is lacking. We conducted a genome-wide association study (GWAS) of total cerebellar volume and underlying cerebellar lobe volumes in 33,265 UK-Biobank participants. Total cerebellar volume was heritable (h2SNP = 50.6%), showing moderate genetic homogeneity across lobes (h2SNP from 35.4% to 57.1%; mean genetic correlation between lobes rg ≈ 0.44). We identified 33 GWAS signals associated with total cerebellar volume, of which 6 are known to alter protein-coding gene structure, while a further five mapped to genomic regions known to alter cerebellar tissue gene expression. Use of summary data-based Mendelian randomisation further prioritised genes whose change in expression appears to mediate the SNP-trait association. In total, we highlight 21 unique genes of greatest interest for follow-up analyses. Using LD-regression, we report significant genetic correlations between total cerebellar volume and brainstem, pallidum and thalamus volumes. While the same approach did not result in significant correlations with psychiatric phenotypes, we report enrichment of schizophrenia, bipolar disorder and autism spectrum disorder associated signals within total cerebellar GWAS results via conditional and conjunctional-FDR analysis. Via these methods and GWAS catalogue, we identify which of our cerebellar genomic regions also associate with psychiatric traits. Our results provide important insights into the common allele architecture of cerebellar volume and its overlap with other brain volumes and psychiatric phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Mentales , Bancos de Muestras Biológicas , Cerebelo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple/genética , Reino Unido
7.
Neuroimage ; 245: 118659, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34767940

RESUMEN

Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Magnetoencefalografía/métodos , Corteza Motora/efectos de los fármacos , Propofol/farmacología , Adulto , Sedación Consciente , Estado de Conciencia/efectos de los fármacos , Estudios Cruzados , Humanos , Masculino , Movimiento/fisiología , Vigilia , Adulto Joven
8.
Netw Neurosci ; 5(2): 477-504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34189374

RESUMEN

Understanding how human brain microstructure influences functional connectivity is an important endeavor. In this work, magnetic resonance imaging data from 90 healthy participants were used to calculate structural connectivity matrices using the streamline count, fractional anisotropy, radial diffusivity, and a myelin measure (derived from multicomponent relaxometry) to assign connection strength. Unweighted binarized structural connectivity matrices were also constructed. Magnetoencephalography resting-state data from those participants were used to calculate functional connectivity matrices, via correlations of the Hilbert envelopes of beamformer time series in the delta, theta, alpha, and beta frequency bands. Nonnegative matrix factorization was performed to identify the components of the functional connectivity. Shortest path length and search-information analyses of the structural connectomes were used to predict functional connectivity patterns for each participant. The microstructure-informed algorithms predicted the components of the functional connectivity more accurately than they predicted the total functional connectivity. This provides a methodology to understand functional mechanisms better. The shortest path length algorithm exhibited the highest prediction accuracy. Of the weights of the structural connectivity matrices, the streamline count and the myelin measure gave the most accurate predictions, while the fractional anisotropy performed poorly. Overall, different structural metrics paint very different pictures of the structural connectome and its relationship to functional connectivity.

9.
Eur Neuropsychopharmacol ; 50: 34-45, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33957336

RESUMEN

As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) plays a crucial role in shaping the frequency and amplitude of oscillations, which suggests a role for GABA in shaping the topography of functional connectivity and activity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) using the GABA transporter 1 (GAT1) blocker, tiagabine (15 mg). In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo. We quantified whole brain activity and functional connectivity in discrete frequency bands. Drug-by-session (2 × 4) analysis of variance in connectivity revealed interaction and main effects. Post-hoc permutation testing of each post-drug recording vs. respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, across 1- 3- and 5- hour recordings following tiagabine only. The same analysis applied to activity revealed significant increases across frontal regions, coupled with reductions in posterior regions, across delta, theta, alpha and beta frequencies. Crucially, the spatial distribution of tiagabine-induced changes overlap with group-averaged maps of the distribution of GABAA receptors, from flumazenil (FMZ-VT) PET, demonstrating a link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. Our results indicate that the relationship between PET receptor distributions and MEG effects warrants further exploration, since elucidating the nature of this relationship may uncover electrophysiologically-derived maps of oscillatory activity as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging.


Asunto(s)
Receptores de GABA-A , Receptores de GABA , Animales , Encéfalo/metabolismo , Humanos , Mamíferos/metabolismo , Ácidos Nipecóticos/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA-A/metabolismo , Tiagabina , Ácido gamma-Aminobutírico
10.
Artículo en Inglés | MEDLINE | ID: mdl-33524599

RESUMEN

BACKGROUND: Altered functional brain connectivity has been proposed as an intermediate phenotype between genetic risk loci and clinical expression of schizophrenia. Genetic high-risk groups of healthy subjects are particularly suited for the investigation of this proposition because they can be tested in the absence of medication or other secondary effects of schizophrenia. METHODS: Here, we applied dynamic functional connectivity analysis to functional magnetic resonance imaging data to reveal the reconfiguration of brain networks during a cognitive task. We recruited healthy carriers of common risk variants using the recall-by-genotype design. We assessed 197 individuals: 99 individuals (52 female, 47 male) with low polygenic risk scores (schizophrenia risk profile scores [SCZ-PRSs]) and 98 individuals (52 female, 46 male) with high SCZ-PRSs from both tails of the SCZ-PRS distribution from a genotyped population cohort, the Avon Longitudinal Study of Parents and Children (N = 8169). We compared groups both on conventional brain activation profiles, using the general linear model of the experiment, and on the neural flexibility index, which quantifies how frequent a brain region's community affiliation changes over experimental time. RESULTS: Behavioral performance and standard brain activation profiles did not differ significantly between groups. High SCZ-PRS was associated with reduced flexibility index and network modularity across n-back levels. The whole-brain flexibility index and that of the frontoparietal working memory network was associated with n-back performance. We identified a dynamic network phenotype related to high SCZ-PRS. CONCLUSIONS: Such neurophysiological markers can become important for the elucidation of biological mechanisms of schizophrenia and, particularly, the associated cognitive deficit.


Asunto(s)
Esquizofrenia , Encéfalo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Estudios Longitudinales , Masculino , Memoria a Corto Plazo/fisiología
11.
Clin Neurophysiol ; 132(4): 922-927, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636607

RESUMEN

OBJECTIVE: For people with idiopathic generalized epilepsy, functional networks derived from their resting-state scalp electrophysiological recordings have shown an inherent higher propensity to generate seizures than those from healthy controls when assessed using the concept of brain network ictogenicity (BNI). Herein we tested whether the BNI framework is applicable to resting-state magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME). METHODS: The BNI framework consists in deriving a functional network from apparently normal brain activity, placing a mathematical model of ictogenicity into the network and then computing how often such network generates seizures in silico. We considered data from 26 people with JME and 26 healthy controls. RESULTS: We found that resting-state MEG functional networks from people with JME are characterized by a higher propensity to generate seizures (i.e., higher BNI) than those from healthy controls. We found a classification accuracy of 73%. CONCLUSIONS: The BNI framework is applicable to MEG and was capable of differentiating people with epilepsy from healthy controls. SIGNIFICANCE: The BNI framework may be applied to resting-state MEG to aid in epilepsy diagnosis.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia Mioclónica Juvenil/diagnóstico , Red Nerviosa/fisiopatología , Adolescente , Adulto , Biomarcadores , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Epilepsia Mioclónica Juvenil/fisiopatología , Adulto Joven
12.
Neuroimage Clin ; 29: 102524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33340975

RESUMEN

Magnetoencephalography (MEG) measures magnetic fields generated by synchronised neural current flow and provides direct inference on brain electrophysiology and connectivity, with high spatial and temporal resolution. The movement-related beta decrease (MRBD) and the post-movement beta rebound (PMBR) are well-characterised effects in magnetoencephalography (MEG), with the latter having been shown to relate to long-range network integrity. Our previous work has shown that the PMBR is diminished (relative to controls) in a group of schizophrenia patients. However, little is known about how this effect might differ in patients at different stages of illness and degrees of clinical severity. Here, we extend our previous findings showing that the MEG derived PMBR abnormality in schizophrenia exists in 29 recent-onset and 35 established cases (i.e., chronic patients), compared to 42 control cases. In established cases, PMBR is negatively correlated with severity of disorganization symptoms. Further, using a hidden Markov model analysis, we show that transient pan-spectral oscillatory "bursts", which underlie the PMBR, differ between healthy controls and patients. Results corroborate that PMBR is associated with disorganization of mental activity in schizophrenia.


Asunto(s)
Ritmo beta , Esquizofrenia , Encéfalo , Humanos , Magnetoencefalografía , Movimiento
13.
Schizophr Bull ; 47(2): 505-516, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32910150

RESUMEN

The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min-1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.


Asunto(s)
Antipsicóticos/farmacología , Cuerpo Estriado , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Giro del Cíngulo , Trastornos Psicóticos , Esquizofrenia , Adulto , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Estudios Transversales , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Espectroscopía de Protones por Resonancia Magnética , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Adulto Joven
14.
Neuroimage ; 226: 117551, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186722

RESUMEN

Recent studies have shown how MEG can reveal spatial patterns of functional connectivity using frequency-specific oscillatory coupling measures and that these may be modified in disease. However, there is a need to understand both how repeatable these patterns are across participants and how these measures relate to the moment-to-moment variability (or 'irregularity) of neural activity seen in healthy brain function. In this study, we used Multi-scale Rank-Vector Entropy (MRVE) to calculate the dynamic timecourses of signal variability over a range of temporal scales. The correlation of MRVE timecourses was then used to detect functional connections in resting state MEG recordings that were robust over 183 participants and varied with temporal scale. We compared these MRVE connectivity patterns to those derived using the more conventional method of oscillatory amplitude envelope correlation (AEC) using methods designed to quantify the consistency of these patterns across participants. Using AEC, the most consistent connectivity patterns, across the cohort, were seen in the alpha and beta frequency bands. At fine temporal scales (corresponding to 'scale frequencies, fS = 30-150Hz), MRVE correlation detected mostly occipital and parietal connections. These showed high similarity with the networks identified by AEC in the alpha and beta frequency bands. The most consistent connectivity profiles between participants were given by MRVE correlation at fS = 75Hz and AEC in the beta band. The physiological relevance of MRVE was also investigated by examining the relationship between connectivity strength and local variability. It was found that local activity at frequencies fS≳ 10Hz becomes more regular when a region exhibits high levels of resting state connectivity, as measured by fine scale MRVE correlation (fS∼ 30-150Hz) and by alpha and beta band AEC. Analysis of the EOG recordings also revealed that eye movement affected both connectivity measures. Higher levels of eye movement were associated with stronger frontal connectivity, as measured by MRVE correlation. More eye movement was also associated with reduced occipital and parietal connectivity strength for both connectivity measures, although this was not significant after correction for multiple comparisons.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Red Nerviosa/fisiología , Descanso/fisiología , Adulto Joven
15.
PLoS One ; 15(12): e0243237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33332389

RESUMEN

It has recently been demonstrated through invasive electrophysiology that visual stimulation with extended patches of uniform colour generates pronounced gamma oscillations in the visual cortex of both macaques and humans. In this study we sought to discover if this oscillatory response to colour can be measured non-invasively in humans using magnetoencephalography. We were able to demonstrate increased gamma (40-70 Hz) power in response to full-screen stimulation with four different colour hues and found that the gamma response is particularly strong for long wavelength (i.e. red) stimulation, as was found in previous studies. However, we also found that gamma power in response to colour was generally weaker than the response to an identically sized luminance-defined grating. We also observed two additional responses in the gamma frequency: a lower frequency response around 25-35 Hz that showed fewer clear differences between conditions than the gamma response, and a higher frequency response around 70-100 Hz that was present for red stimulation but not for other colours. In a second experiment we sought to test whether differences in the gamma response between colour hues could be explained by their chromatic separation from the preceding display. We presented stimuli that alternated between each of the three pairings of the three primary colours (red, green, blue) at two levels of chromatic separation defined in the CIELUV colour space. We observed that the gamma response was significantly greater to high relative to low chromatic separation, but that at each level of separation the response was greater for both red-blue and red-green than for blue-green stimulation. Our findings suggest that the stronger gamma response to red stimulation cannot be wholly explained by the chromatic separation of the stimuli.


Asunto(s)
Percepción de Color , Estimulación Luminosa , Corteza Visual/fisiología , Adulto , Color , Femenino , Humanos , Magnetoencefalografía , Masculino , Adulto Joven
16.
Transl Psychiatry ; 10(1): 324, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958742

RESUMEN

Rare copy number variants associated with increased risk for neurodevelopmental and psychiatric disorders (referred to as ND-CNVs) are characterized by heterogeneous phenotypes thought to share a considerable degree of overlap. Altered neural integration has often been linked to psychopathology and is a candidate marker for potential convergent mechanisms through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to investigate resting-state oscillatory connectivity in a cohort of 42 adults with ND-CNVs, including deletions or duplications at 22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between occipital, temporal, and parietal areas in participants with ND-CNVs. This pattern was common across genotypes and not exclusively characteristic of 22q11.2 deletions, which were present in a third of our cohort. Furthermore, a data-driven graph theory framework enabled us to successfully distinguish participants with ND-CNVs from unaffected controls using differences in node centrality and network segregation. Together, our results point to alterations in electrophysiological connectivity as a putative common mechanism through which genetic factors confer increased risk for neurodevelopmental and psychiatric disorders.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos Mentales , Adulto , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Fenotipo
17.
Neuroimage ; 221: 117189, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711064

RESUMEN

Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas , Ketamina/farmacología , Magnetoencefalografía , Modelos Biológicos , Células Piramidales , Tálamo , Adolescente , Adulto , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento Visual de Modelos/efectos de los fármacos , Reconocimiento Visual de Modelos/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología , Adulto Joven
18.
Netw Neurosci ; 4(2): 374-396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32537532

RESUMEN

Juvenile myoclonic epilepsy (JME) is a form of idiopathic generalized epilepsy. It is yet unclear to what extent JME leads to abnormal network activation patterns. Here, we characterized statistical regularities in magnetoencephalograph (MEG) resting-state networks and their differences between JME patients and controls by combining a pairwise maximum entropy model (pMEM) and novel energy landscape analyses for MEG. First, we fitted the pMEM to the MEG oscillatory power in the front-oparietal network (FPN) and other resting-state networks, which provided a good estimation of the occurrence probability of network states. Then, we used energy values derived from the pMEM to depict an energy landscape, with a higher energy state corresponding to a lower occurrence probability. JME patients showed fewer local energy minima than controls and had elevated energy values for the FPN within the theta, beta, and gamma bands. Furthermore, simulations of the fitted pMEM showed that the proportion of time the FPN was occupied within the basins of energy minima was shortened in JME patients. These network alterations were highlighted by significant classification of individual participants employing energy values as multivariate features. Our findings suggested that JME patients had altered multistability in selective functional networks and frequency bands in the fronto-parietal cortices.

19.
Epilepsy Res ; 163: 106324, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335503

RESUMEN

BACKGROUND: Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation. METHODS: We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (40-60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of 'virtual sensors' for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons. RESULTS: We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls. CONCLUSIONS: Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta - the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia Mioclónica Juvenil/fisiopatología , Vías Nerviosas/fisiopatología , Descanso/fisiología , Adolescente , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Red Nerviosa/fisiología , Convulsiones/fisiopatología
20.
Neuroimage Clin ; 28: 102485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33395976

RESUMEN

Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia. Recent electrophysiology studies suggest that long-range temporal correlation (LRTC) in the amplitude dynamics of neural oscillations captures the integrity of transferred information in the healthy brain. Thus, in this study, 25 schizophrenia patients and 25 controls (8 females/group) were recorded during two five-minutes of resting-state magnetoencephalography (once with eyes-open and once with eyes-closed). We used source-level analyses to investigate temporal dysconnectivity in patients by characterizing LRTCs across cortical and sub-cortical brain regions. In addition to standard statistical assessments, we applied a machine learning framework using support vector machine to evaluate the discriminative power of LRTCs in identifying patients from healthy controls. We found that neural oscillations in schizophrenia patients were characterized by reduced signal memory and higher variability across time, as evidenced by cortical and subcortical attenuations of LRTCs in the alpha and beta frequency bands. Support vector machine significantly classified participants using LRTCs in key limbic and paralimbic brain areas, with decoding accuracy reaching 82%. Importantly, these brain regions belong to networks that are highly relevant to the symptomology of schizophrenia. These findings thus posit temporal dysconnectivity as a hallmark of altered information processing in schizophrenia, and help advance our understanding of this pathology.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Aprendizaje Automático , Esquizofrenia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA