Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Biol Chem ; : 107759, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260695

RESUMEN

Chemical insecticides (organophosphates and pyrethroids) in the form of IRS (Indoor Residual Sprays) and LLINs (Long Lasting insecticidal nets) are the cornerstone for vector control, globally. However, their incessant use has resulted in widespread development of resistance in mosquito vectors, warranting continuous monitoring and investigation of the underlying mechanisms of resistance. Here, we identified a previously uncharacterized- Cub and Sushi Domain containing Insecticide Resistance (CSDIR) protein and generated evidence for its role in mediating insecticide resistance in the Anopheles stephensi. A strong binding affinity of the CSDIR protein towards different classes of insecticide molecules-malathion (KD 6.43 µM) and deltamethrin (KD 46.7µM) were demonstrated using MD simulation studies and Surface Plasmon Resonance (SPR) experiments. Further, the recombinant CSDIR913-1190 protein exhibited potent esterase-like activity (α-naphthyl acetate (α-NA)- 1.356±0.262 mM/min/mg and ß-naphthyl acetate (ß -NA)- 1.777±0.220 mM/min/mg). Interestingly, dsRNA-mediated gene silencing of the CSDIR transcripts caused >60% mortality in resistant An. stephensi upon 1-hour exposure to deltamethrin and malathion insecticides, compared to the control group. A significant reduction in the esterase-like activity was also observed against α-NA (P=0.004) and ß-NA (P=0.025) in CSDIR silenced mosquitoes compared to the control group. Using computational analysis and experimental data, our results provided significant evidence of the involvement of the CSDIR protein in mediating insecticide resistance in Anopheles mosquitoes. Thereby making the CSDIR protein, a novel candidate for exploration of novel insecticide molecules. These data would also be helpful in further understanding the development of metabolic resistance by the Anopheles vector.

2.
Cureus ; 16(7): e65855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39219932

RESUMEN

Chronic edema, which has multiple etiologies, is predicted to be a significant underlying cause of lymphedema, potentially leading to serious complications. Elephantiasis, characterized by massive swelling of any body part, is a rare but debilitating condition often associated with lymphatic obstruction or anomalies in the lymphatic system. Lymphedema can predispose a patient to cellulitis, an infectious condition with multiple risk factors. This case study presents a 45-year-old male with a history of chronic lymphatic obstruction due to elephantiasis and recurrent cellulitis in his lower limb. Despite receiving multiple courses of antibiotics, the patient continued to experience multiple episodes of cellulitis, along with worsening lymphedema and functional impairment of the limb. The mainstay of treatment for this condition includes compression stockings and surgery, but addressing the root cause of the disease is crucial. Typically, a multidisciplinary approach is required, involving antibiotics, lymph drainage, and compression therapy. This case highlights the challenges faced in managing elephantiasis and its related complications and emphasizes the need for preventive strategies.

3.
Future Microbiol ; : 1-15, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235058

RESUMEN

Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.


[Box: see text].

4.
Mini Rev Med Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39279694

RESUMEN

Considerable advancements have been made in breast cancer therapeutics in the past few decades. However, the advent of chemo-resistance and adverse drug reactions coupled with tumor metastasis and recurrence posed a serious threat to combat this lethal disease. Novel anti-cancer agents, as well as new therapeutic strategies, are needed to complement conventional breast cancer therapies. The quest for developing novel anti-cancer drugs caused an upsurge in exploring and harnessing natural compounds, especially phytochemicals. Various research groups have explored and documented the anti-cancer potential of wide variety of phytochemical groups including flavonoids (curcumin, kaempferol, myricetin, quercetin, naringenin, apigenin, genistein epigallocatechin gallate), stilbenes (resveratrol), carotenoids (crocin, lycopene, lutein), and anthraquinone (Emodin). However, low chemical stability, poor water solubility, and short systemic half-life impede their clinical utility. The implication of nano-technological approaches to decode the pharmacokinetic challenges associated with phytochemical usage, as well as selective drug targeting, have markedly enhanced the pre-clinical anti-cancer activity, thus aiding in their clinical translation. This review documented the recent advances in utilizing phytochemicals for breast cancer prevention and lipidbased nanotechnological approaches for circumventing their pharmacokinetic concerns to enhance their systemic availability, cytotoxicity, and targeted delivery against breast cancer alone as well as in combination with conventional therapeutic agents.

5.
Curr Med Chem ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39185645

RESUMEN

The malaria parasite Plasmodium expresses four related papain-family cysteine proteases. Targeting these different cysteine proteases can elucidate their roles and potential as therapeutic targets, thereby expanding the pool of antimalarial targets. During gametogenesis, cysteine proteases like SERA-5, SERA-3, DPAP-1, DPAP-2, DPAP- 3, and Falcipain-1 are required for parasitophorous vacuole membrane (PVM) rupture. In the liver stage, cysteine proteases such as Falcipain-1 and SERA-3, SERA-4, SERA-5, and SERA-6 are essential. Additionally, cysteine proteases like DPAP-3, Falcipain- 1, Falcipain-2, Falcipain-3, and SERA-5, SERA-6 play crucial roles in merozoite invasion into red blood cells (RBCs), hemoglobin degradation, and merozoite release from RBCs. This review summarizes the available literature describing the key roles of various cysteine proteases in the life cycle of the malaria parasite and their potential as targets for antimalarial therapy. Understanding these proteases could aid in developing novel antimalarial treatments and overcoming drug resistance.

6.
Int J Biol Macromol ; 279(Pt 1): 135069, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187102

RESUMEN

One of the fundamental mechanisms developed by the host to contain the highly infectious and rapidly proliferating SARS-coronavirus is elevation of body temperature, a natural fallout of which is heat shock proteins over-expression. Here, for the first time, we demonstrate that the SARS-CoV-2 exploits the host Heat shock protein 70 (Hsp70) chaperone for its entry and propagation, and blocking it can combat the infection. SARS-CoV-2 infection as well as febrile temperature enhanced Hsp70 expression in host Vero E6 cells. Furthermore, heat shock or viral infection elevated the host cell autophagic response which is a prerequisite for viral propagation. In addition, Hsp70 protein demonstrated strong interaction with host Angiotensin-converting enzyme 2 (ACE2) as well as the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein, indicating that interaction of Hsp70 with ACE2 and Spike protein may serve to protect them during febrile conditions. Suppressive and prophylactic treatment of Vero E6 cells with Hsp70 inhibitor PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), abrogated viral infection more potently than the currently used drug Remdesivir. In conclusion, our study not only provides a fundamental insight into the role of host Hsp70 in SARS-CoV-2 pathogenesis, it paves the way for development of potent and irresistible anti-viral therapeutics.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167444, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39074627

RESUMEN

The glucose-6-phosphate dehydrogenase (G6PD) deficiency is X-linked and is the most common enzymatic deficiency disorder globally. It is a crucial enzyme for the pentose phosphate pathway and produces NADPH, which plays a vital role in regulating the oxidative stress of many cell types. The deficiency of G6PD primarily causes hemolytic anemia under oxidative stress triggered by food, drugs, or infection. G6PD-deficient patients infected with SARS-CoV-2 showed an increase in hemolysis and thrombosis. Patients also exhibited prolonged COVID-19 symptoms, ventilation support, neurological impacts, and high mortality. However, the mechanism of COVID-19 severity in G6PD deficient patients and its neurological manifestation is still ambiguous. Here, using a CRISPR-edited G6PD deficient human microglia cell culture model, we observed a significant reduction in NADPH level and an increase in basal reactive oxygen species (ROS) in microglia. Interestingly, the deficiency of the G6PD-NAPDH axis impairs induced nitric oxide synthase (iNOS) mediated nitric oxide (NO) production, which plays a fundamental role in inhibiting viral replication. Surprisingly, we also observed that the deficiency of the G6PD-NADPH axis reduced lysosomal acidification and free radical production, further abrogating the lysosomal clearance of viral particles. Thus, impairment of NO production, lysosomal functions, and redox dysregulation in G6PD deficient microglia altered innate immune response, promoting the severity of SARS-CoV-2 pathogenesis.


Asunto(s)
COVID-19 , Deficiencia de Glucosafosfato Deshidrogenasa , Lisosomas , Microglía , Óxido Nítrico Sintasa de Tipo II , Fagocitosis , Humanos , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , COVID-19/inmunología , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/patología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Lisosomas/metabolismo , Microglía/metabolismo , Microglía/patología , NADP/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas
8.
Proteomics Clin Appl ; : e202300115, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082488

RESUMEN

PURPOSE: Merozoites are the only extracellular form of blood stage parasites, making it a worthwhile target. Multiple invasins that are stored in the merozoite apical organelles, are secreted just prior to invasion, and mediates its interaction with RBC. A comprehensive identification of all these secreted invasins is lacking and this study addresses that gap. EXPERIMENTAL DESIGN: Pf3D7 merozoites were enriched and triggered to discharge apical organelle contents by exposure to ionic conditions mimicking that of blood plasma. The secreted proteins were separated from cellular contents and both the fractions were subjected to proteomic analysis. Also, the identified secreted proteins were subjected to GO, PPI network analysis, and AI-based in silico approach to understand their vaccine candidacy. RESULTS: A total of 63 proteins were identified in the secretory fraction with membrane and apical organellar localization. This includes various MSPs, micronemal EBAs and rhoptry bulb proteins, which play a crucial role in initial and late merozoite attachment, and majority of them qualified as vaccine candidates. CONCLUSION AND CLINICAL RELEVANCE: We, for the first time, report the secretory repertoire of merozoite and its status for vaccine candidacy. This information can be utilized to develop better invasion blocking multisubunit vaccines, comprising of immunological epitopes from several secreted invasins.

9.
J Biol Chem ; 300(8): 107496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925325

RESUMEN

Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date. Here, we functionally characterized all Pf Prefoldin subunits (PFD1-6) and established a causative role played by PFDs in ART resistance by demonstrating their expression in intra-erythrocytic parasites along with their interactions with Kelch13 protein through immunoprecipitation coupled MS/MS analysis. Systematic biophysical interaction analysis between all subunits of PFDs revealed their potential to form a complex. The role of PFDs in ART resistance was confirmed in orthologous yeast PFD6 mutants, where PfPFD6 expression in yeast mutants reverted phenotype to ART resistance. We identified an FDA-approved drug "Biperiden" that restricts the formation of Prefoldin complex and inhibits its interaction with its key parasite protein substrates, MSP-1 and α-tubulin-I. Moreover, Biperiden treatment inhibits the parasite growth in ART-sensitive Pf3D7 and resistant Pf3D7k13R539T strains. Ring survival assays that are clinically relevant to analyze ART resistance in Pf3D7k13R539T parasites demonstrate the potency of BPD to inhibit the growth of survivor parasites. Overall, our study provides the first evidence of the role of PfPFDs in ART resistance mechanisms and opens new avenues for the management of resistant parasites.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Respuesta de Proteína Desplegada , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Artemisininas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , Antimaláricos/farmacología , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
10.
ACS Infect Dis ; 10(6): 2074-2088, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717971

RESUMEN

Palmitoylation is an essential post-translational modification in Leishmania donovani, catalyzed by enzymes called palmitoyl acyl transferases (PATs) and has an essential role in virulence. Due to the toxicity and promiscuity of known PAT inhibitors, identification of new molecules is needed. Herein, we identified a specific novel de novo peptide inhibitor, PS1, against the PAT6 Leishmania donovani palmitoyl acyl transferase (LdPAT6). To demonstrate specific inhibition of LdPAT6 by PS1, we employed a bacterial orthologue system and metabolic labeling-coupled click chemistry where both LdPAT6 and PS1 were coexpressed and displayed palmitoylation suppression. Furthermore, strong binding of the LdPAT6-DHHC domain with PS1 was observed through analysis using microscale thermophoresis, ELISA, and dot blot assay. PS1 specific to LdPAT6 showed significant growth inhibition in promastigotes and amastigotes by expressing low cytokines levels and invasion. This study reveals discovery of a novel de novo peptide against LdPAT6-DHHC which has potential to block survivability and infectivity of L. donovani.


Asunto(s)
Aciltransferasas , Leishmania donovani , Péptidos , Leishmania donovani/enzimología , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Péptidos/farmacología , Péptidos/química , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Lipoilación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/química , Leishmaniasis Visceral/parasitología
11.
Cureus ; 16(4): e58502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38765429

RESUMEN

Osteoarthritis (OA) and diabetes mellitus (DM) have long-term deleterious chronic effects and are among the most prevalent chronic disorders. DM and its associated factors, such as hyperglycemia, have a significant contribution to the pathophysiology of OA, particularly in post-menopausal women. Women who have uncontrolled diabetes (DM) are more prone to develop osteoarthritis (OA), which may be exacerbated by poor glycemic control. Furthermore, this category of female patients with DM has an increased risk of developing fractures, even in those with initially normal bone density scores, further illustrating the correlation between DM and bone health. Additionally, multiple risk factors, including obesity, metabolic syndrome, hypertension, estrogen-based hormone therapy, and hyperuricemia, in menopausal women can lead to the development and exacerbation of OA. It is discovered that these variables have a direct or indirect impact, frequently causing inflammation and hormonal changes, which contribute to the intricate interaction between DM and OA. The management of OA and DM in women thus calls for a multi-faceted management plan including glycemic control, weight control, exercise, and specialized pain management methods catering to the specific requirements of the patients. Regularly screening for OA should be implemented for menopausal women with DM and utmost care should be provided by healthcare professionals. Regular monitoring of joint health and early management, encouraging interdisciplinary cooperation, putting preventative measures into place, and creating individualized treatment programs are essential. A thorough understanding of the link between DM and OA will ultimately lead to improved health outcomes and a better future for these individuals.

12.
iScience ; 27(6): 109918, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812541

RESUMEN

Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.

14.
iScience ; 27(5): 109574, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646175

RESUMEN

The chemical understanding of biological processes provides not only a deeper insight but also a solution to abnormal biological functioning. Protein degradation, a natural biological process for debris removal in the cell, has been studied for years. The recent finding that natural degradation pathways can be utilized for therapeutic purposes is a paradigm shift in the drug discovery approach. Methods such as Proteolysis Targeting Chimera (PROTAC), lysosomal targeting chimera, hydrophobic tagging, AUtophagy TArgeting Chimera, AUTOphagy TArgeting Chimera and several other variants of these methods have made a considerable impact on the way of drug design. Few selected examples testify that a huge wave of change is on the way. The drug design based on the targeted protein degradation is a powerful tool in our arsenal. More molecules will be invented that will uncover the hidden secrets of biological functioning and provide enduring solutions to several unmet medical needs.

15.
Environ Geochem Health ; 46(4): 130, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483703

RESUMEN

River Mahi drains through semi-arid regions (Western India) and is a major Arabian Sea draining river. As the principal surface water source, its water quality is important to the regional population. Therefore, the river water was sampled extensively (n = 64, 16 locations, 4 seasons and 2 years) and analyzed for 11 trace elements (TEs; Sr, V, Cu, Ni, Zn, Cd, Ba, Cr, Mn, Fe, and Co). Machine learning (ML) and multivariate statistical analysis (MVSA) were applied to investigate their possible sources, spatial-temporal-annual variations, evaluate multiple water quality parameters [heavy metal pollution index (HPI), heavy metal evaluation index (HEI)], and health indices [hazard quotient (HQ), and hazard index (THI)] associated with TEs. TE levels were higher than their corresponding world average values in 100% (Sr, V and Zn), 78%(Cu), 41%(Ni), 27%(Cr), 9%(Cd), 8%(Ba), 8%(Co), 6%(Fe), and 0%(Mn), of the samples. Three principal components (PCs) accounted for 74.5% of the TE variance: PC-1 (Fe, Co, Mn and Cu) and PC-2 (Sr and Ba) are contributed from geogenic sources, while PC-3 (Cr, Ni and Zn) are derived from geogenic and anthropogenic sources. HPI, HEI, HQ and THI all indicate that water quality is good for domestic purposes and poses little hazard. ML identified Random forest as the most suitable model for predicting HEI class (accuracy: 92%, recall: 92% and precision: 94%). Even with a limited dataset, the study underscores the potential application of ML to predictive classification modeling.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Oligoelementos/análisis , Ríos , Cadmio/análisis , Calidad del Agua , Metales Pesados/análisis , Medición de Riesgo
16.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460641

RESUMEN

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Asunto(s)
Cisteína Endopeptidasas , Plasmodium falciparum , Pliegue de Proteína
17.
Nat Commun ; 15(1): 1794, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413594

RESUMEN

Ex vivo cellular system that accurately replicates sickle cell disease and ß-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and ß-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/terapia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Células Madre Hematopoyéticas/metabolismo , Genotipo , Sistemas CRISPR-Cas
18.
Heliyon ; 10(3): e25077, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327451

RESUMEN

The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 µM & 1.8 µM (7l), and 3.5 µM & 2.7 µM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.

19.
Future Microbiol ; 19: 33-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37830931

RESUMEN

Aim: Leishmaniasis is characterized by a spectrum of diseases with two main clinical forms, cutaneous and visceral, caused by Leishmania tropica and Leishmania donovani, respectively. Studying Leishmania's interaction with the epithelial barrier at the initial site of a bite is crucial to understanding the establishment of the disease. Materials & methods: To discern parasite-host epithelial interaction, we developed in vitro cellular models involving co-cultures of Leishmania and MDCK epithelial cells. Results: Both L. donovani-MDCK and L. tropica-MDCK co-culture models demonstrated a phenomenon known as atypical anoikis apoptosis, typically identified by distinctive 'flipping in' of cell membranes and disordered cytoskeletal frameworks. Conclusion: This study bridges the gap in the fundamental understanding of the intricate latticework involving vector-Leishmania-host and may inform drug development strategies.


Small parasites called Leishmania are passed to humans through the bites of sandflies. These parasites cause three deadly forms of disease: one that affects the organs, one that causes skin lesions and one that affects organ linings. This study looked at how Leishmania parasites behave when they enter through the skin. We found that when the parasites were in contact with cells, the cells changed their shape and lost contact with neighboring cells. This led to a type of cell death known as anoikis, a Greek term meaning 'homelessness'.


Asunto(s)
Personas con Mala Vivienda , Leishmania donovani , Leishmania tropica , Leishmaniasis Cutánea , Leishmaniasis Visceral , Humanos , Anoicis , Células Epiteliales
20.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039787

RESUMEN

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Antimaláricos/química , Piperazina/farmacología , Triazoles/química , Cloroquina/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum , Hemoglobinas/metabolismo , Hemoglobinas/farmacología , Hemoglobinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA