RESUMEN
Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (â¢NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for â¢NO donors, thus facilitating controlled and synchronized release and targeted delivery of â¢NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and â¢NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.
RESUMEN
Sustainable agriculture has become prime importance to feed growing population. To achieve this goal application of exogenous hormones and signaling molecules are gaining important. In this context, we have investigated potential of ethylene (25 µM ethephon; donor) and H2S (10 µM NaHS; donor) in mitigating hexavalent chromium [Cr (VI), 50 µM] toxicity in two pulse seedlings: black bean and mung bean. Cr(VI) declined growth and gas exchange parameters (photosynthetic rate, stomatal conductance, sub cellular CO2 concentration, and transpiration level) which was accompanied by intracellular accumulation of Cr in both pulse crops and the damaging effect was greater in mung bean seedlings. The suppression in the growth and related parameters was occurred due to higher buildup of oxidative stress markers; O2â¢â¾, H2O2, lipid peroxidation (as malondialdehyde, MDA equivalents) and membrane injury in leaf and root of both pulse crops. Cr induced disturbance in AsA-GSH cycle (reduction in the activity of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, and the amount of ASA and GSH) could be one of the reasons for greater accumulation of H2O2. Further, exogenous application of ethylene and H2S significantly ameliorated Cr toxicity on growth and photosynthetic activity by significantly lowering the intracellular Cr accumulation and oxidative biomarkers, and also by strengthening the activity of AsA-GSH cycle. The exogenous application of biosynthesis inhibitors of ethylene (AVG) and H2S (PAG) caused greater damaging effect on these parameters due to more accumulation of Cr(VI), thereby suggesting that the endogenous levels of these regulators are critical for Cr(VI) tolerance. Interestingly, ET did not rescue adverse effects of Cr(VI) in absence of endogenous H2S, while H2S could do so even without endogenous ethylene, suggesting that H2S played downstream signaling to ethylene in regulating Cr(VI) toxicity. Hence, being cheap and easily available theses growth regulators may be considered for sustainable agriculture.
RESUMEN
The mechanism that synchronizes the timing of parturition remains a mystery. Each mammalian species has a specific duration of gestation that is determined by integrated interactions among the mother, placenta, and fetus. Senescence is primarily driven by DNA damage and is one of the critical factors influencing both parturition and lifespan. In this study, we investigated senescence as a physiological process during pregnancy and observed a gradual physiological increase in senescence in the maternal decidua and placental cells with gestation. This increase in senescence was associated with a gradual physiological increase in DNA damage during gestation. An analysis of the AnAge dataset revealed a positive correlation between the gestation period and maximum lifespan across 740 mammalian species. This finding supports the hypothesis that the rates of DNA damage and senescence may impact both the gestation period and lifespan. We suggest that the relationship between gestation period and lifespan in mammals is mediated by species-specific rates of DNA damage and senescence, necessitating further explorations into their causal roles.
RESUMEN
Seed priming by nitric oxide (NO) and hydrogen sulphide (H2S) in combating against abiotic stress in plants is well documented. However, knowledge of fundamental mechanisms of their crosstalk is scrambled. Therefore, the reported study examined the probable role of NO and H2S in the mitigation of arsenate toxicity (As(V)) in rice seedlings and whether their potential signalling routes crossover. Results report that As(V) toxicity limited shoot and root length growth with more As accumulation in roots. As(V) further caused elevated reactive oxygen species levels, inhibited ascorbate-glutathione cycle enzymes and relative gene expression of its enzymes and thus, causing lipid and protein oxidation. These results correlate with reduced nitric oxide synthase-like and L-cysteine desulfhydrase activity along with endogenous NO and H2S. While, L-NAME or PAG augmented As(V) toxicity, and addition of SNP or NaHS effectively reversed their respective effects. Furthermore, SNP under PAG or NaHS under L-NAME were able to pacify As(V) stress, implicating that endogenous NO and H2S efficiently ameliorate As(V) toxicity but without their shared signaling in rice seedlings.
Asunto(s)
Arseniatos , Ácido Ascórbico , Glutatión , Sulfuro de Hidrógeno , Óxido Nítrico , Oryza , Plantones , Azufre , Oryza/metabolismo , Oryza/genética , Oryza/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/genética , Arseniatos/toxicidad , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Azufre/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/genéticaRESUMEN
Primary leiomyosarcoma of the inferior vena cava (IVC) is a rare and aggressive mesenchymal tumor, with less than 400 reported cases to date. Complete resection of the tumor with clear margins is the only proven curative treatment, providing survival benefits. Nonetheless, leiomyosarcomas in the middle segment or those extending up to it within the inferior vena cava (IVC) frequently necessitate renal reimplantation or nephrectomy, with rates varying between 56% and 75%. In this case report, we present a 65-year-old female with lower segment IVC leiomyosarcoma with middle segment extension, successfully resected and reconstructed while avoiding associated renal reimplantation or nephrectomy morbidity.
Asunto(s)
Leiomiosarcoma , Neoplasias Vasculares , Vena Cava Inferior , Humanos , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/cirugía , Vena Cava Inferior/patología , Leiomiosarcoma/cirugía , Leiomiosarcoma/diagnóstico por imagen , Leiomiosarcoma/patología , Femenino , Anciano , Neoplasias Vasculares/cirugía , Neoplasias Vasculares/diagnóstico por imagen , Neoplasias Vasculares/patología , Resultado del Tratamiento , Implantación de Prótesis Vascular/instrumentación , Invasividad Neoplásica , Flebografía/métodos , Angiografía por Tomografía ComputarizadaRESUMEN
Auxin is a key phytohormone, but the mechanism underlying apoplastic auxin perception has remained elusive. Yu et al. recently demonstrated that the interaction of two novel apoplast-localized auxin-binding protein 1 (ABP1)-like proteins, ABL1 and ABL2, with transmembrane kinases (TMKs) shapes extracellular auxin perception in both an overlapping and an ABP1-independent manner.
RESUMEN
The menace of drought has persistently loomed over global crop production, posing a serious threat to agricultural sustainability. Research on drought stress highlights the important role of the phytohormone abscisic acid (ABA) in orchestrating plant responses to drought conditions. ABA regulates various drought/dehydration-responsive genes, initiates stomatal closure, and influences cellular responses to drought stress. Additionally, plants employ a phosphate starvation response (PSR) mechanism to manage phosphate (Pi) deficiency, with ABA playing a role in its regulation. However, despite intensive research in these fields, the precise connection among PSRs, drought stress, and ABA signaling still needs to be determined. Recently, PSR-related gene induction has been reported to occur before the induction of ABA-responsive genes under progressive mild drought. Mild drought decreases Pi uptake and contents in plants, triggering PSRs, which play an important role in plant growth during mild drought. Both ABA-responsive and PSR-related gene expression could indicate plant perception of external moisture conditions. Thus, integrating the information regarding their associated gene expression with soil moisture contents and thermographic data can enable timely irrigation optimization to mitigate the effect of drought on crop productivity.
RESUMEN
BACKGROUND: Pulmonary fibrosis is a chronic, progressive lung condition that involves lung tissue scarring and thickening. The effects of home-based pulmonary rehabilitation (PR) in post-covid pulmonary fibrosis (PCPF) and other forms of fibrosis together have not been evaluated. This study aims to evaluate the effectiveness of home-based pulmonary rehabilitation on pulmonary function, functional capacity, and health-related quality of life in people with pulmonary fibrosis (post-COVID pulmonary fibrosis, pulmonary fibrosis secondary to pulmonary tuberculosis (TB), pulmonary fibrosis secondary to interstitial lung disease (ILD), pulmonary fibrosis secondary to bronchiectasis). METHODS: A single-group pretest-posttest experimental study was performed after recruiting 98 pulmonary fibrosis subjects from K.M.C hospitals. After being screened for the inclusion and exclusion criteria, 45 subjects were analyzed, and 6 subjects were lost to follow-up. A home-based pulmonary rehabilitation program was carried out for 8 weeks (warm-up, stretching exercises, aerobic exercise, strength training for upper limb and lower limb, breathing exercises mainly involved; others: energy saving techniques, controlled coughing techniques, dyspnea relieving positions). The program was supervised via weekly phone calls. Pulmonary function (Pulmonary function test), exercise capacity (6-minute walk test), dyspnea (modified Borg scale), and health-related quality of life (SF-36) were evaluated before and after the intervention. During the enrollment and after the 6-minute walk test, saturation of peripheral oxygen (SPO2) level was also evaluated pre-intervention and after the 8-weeks program. RESULTS: Pulmonary function [FVC(L) t = -12.52, p<0.05; FEV1(L) t = -2.56, p<0.05; FEV1/FVC t = 7.98, p<0.05 and DLCO (ml/min/mmHg) t = -5.13, p<0.05], 6MWD [MD 88.66; p<0.05] and HRQOL measured by SF-36 scores (p<0.05) were improved significantly. Both the baseline SPO2 level before the 6MWT [MD 1.07, p<0.05] and the SPO2 level after the 6MWT [MD 1.16, p<0.05] showed a significant improvement. The rating of perceived exertion(dyspnea) [MD 1.30, p<0.05] was reduced significantly after the 8-week program. CONCLUSION: Our study shows that home-based pulmonary rehabilitation is an effective option for improving lung function and physical functional capacity by reducing dyspnea perception and improving the saturation of peripheral oxygen (SPO2) level, and enhancing the quality of life in people with pulmonary fibrosis.
Asunto(s)
Criptocromos , Daño del ADN , Luz , Criptocromos/metabolismo , Criptocromos/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Plantas/genética , Plantas/metabolismo , Plantas/efectos de la radiación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz AzulRESUMEN
Background: In most settings, patients receive phase 1 cardiac rehabilitation in CTVS ICU at the hospital, but there are several barriers to follow-up after patients are discharged from the hospital. Physiotherapists play an important role in the enrolment and continuation of cardiac rehabilitation. Thus, we aim to study the knowledge, attitude, and practice of physiotherapists about CR program adherence among patients discharged from the hospital after cardiac surgery. Objectives: (i) To study the knowledge of physiotherapists about the importance of cardiac rehabilitation after discharge; (ii) to know the attitude of physiotherapists towards cardiac surgery patients after discharge; and (iii) to know what approach various centres are applying for patients after discharge to ensure adherence to cardiac rehabilitation. Methods: A questionnaire was developed with reference to the objectives of the study, which was answered by a total of 127 physiotherapists. Results: The overall response rate was 42.3%; nearly 35.4% of the participants indicated that they knew a lot about CR, while 5.5% said they knew very little. Regarding the program's content, 36.2% of participants reported having a medium degree of awareness of the diverse CR components, while 8.6% reported having very little knowledge of them. Only about one-third, 35.7% stated that CR in India is effective and 95% believed that CR will have an added value for the country. Approximately 80% of respondents thought that it would be challenging for a physiotherapist to recommend patients to a CR in the nation. Nearly 35% of respondents believed that they, "themselves as physios," needed to commence CR, and slightly less than 70% thought that doctors were required to choose and refer the patients when asked who should take the initiative to start this kind of programme in the country. A little over 40% of respondents said that insurance firms are also involved in starting a CR programme. Conclusion: Physiotherapists have good knowledge of cardiac rehabilitation. However, their attitude and practice towards adherence to exercise protocols are confounded by various clinician- and patient-level factors.
Asunto(s)
Rehabilitación Cardiaca , Procedimientos Quirúrgicos Cardíacos , Conocimientos, Actitudes y Práctica en Salud , Alta del Paciente , Fisioterapeutas , Humanos , India , Femenino , Masculino , Procedimientos Quirúrgicos Cardíacos/rehabilitación , Encuestas y Cuestionarios , Adulto , Persona de Mediana Edad , Cooperación del Paciente , Actitud del Personal de SaludRESUMEN
MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.
Asunto(s)
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estrés Oxidativo , Fosfatos , Fotosíntesis , Raíces de Plantas , Silicio , Hordeum/metabolismo , Hordeum/genética , Hordeum/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Silicio/farmacología , Silicio/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Plantones/efectos de los fármacos , Plantones/fisiologíaRESUMEN
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Asunto(s)
Productos Agrícolas , Oxidación-Reducción , Productos Agrícolas/metabolismo , Agricultura/métodos , Estrés Fisiológico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Asunto(s)
Desarrollo de la Planta , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo , Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Evolución Biológica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Asunto(s)
Óxido Nítrico , Solanum lycopersicum , Ácidos Triyodobenzoicos , Óxido Nítrico/metabolismo , Arseniatos/toxicidad , Plantones/metabolismo , Clorofila A/metabolismo , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismoRESUMEN
The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.
Asunto(s)
Plantones , Ácidos Triyodobenzoicos , Triticum , Triticum/metabolismo , Silicio/farmacología , Citocininas/farmacología , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Ácidos Indolacéticos/farmacología , Prolina/metabolismo , Prolina/farmacología , Estrés OxidativoRESUMEN
After being infested by aphids, plants trigger a signaling pathway that involves methyl salicylate as an airborne signaling molecule. Thus, the regulation of communication for systemically acquired resistance produced via methyl salicylate is helpful in generating stress resistance among plants against aphid infestation.
Asunto(s)
Áfidos , Salicilatos , Animales , Áfidos/fisiología , Transducción de SeñalRESUMEN
Petal is one of the most esthetic and essential parts of a flower that fascinates the pollinators to enhance pollination. Petal senescence is a highly controlled and organized natural phenomenon assisted by phytohormones and gene regulation. It is an inelastically programmed event preceding to which petals give rise to color and scent that captivate pollinators, representing a flower's maturity for sexual reproduction. Till today, many genes involved in the petal senescence through genetic as well as epigenetic changes in response to hormones have been identified. In most of the species, petal senescence is controlled by ethylene, whereas others are independent of this hormone. It has also been proved that the increase in the carbohydrate contents like mannitol, inositol and trehalose delayed the senescence in tulips and Gladiolus. An increased sugar content prevents the biosynthesis of EIN3-like mRNA and further upregulates several senescence correlated genes. A wide range of different transcription factors as well as regulators are disparately expressed in ethylene insensitive and ethylene sensitive petal senescence. DcHB30, a downregulating factor, which upon linking physically to DcWRKY75 leads to the upregulation of ethylene promoting petal senescence. Here we describe the role of ethylene in petal senescence through epigenetic changes. Studies show that ethylene causes petal senescence through epigenetic changes. Feng et al. (Plant Physiol 192:546-564, 2023) observed that ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) promotes trimethylation of histone 3 (H3) at 4th lysine (H3K4me3) in Carnation. H3K4me3 further stimulates the expression of genes of ethylene biosynthesis and senescence, leading to senescence in Carnation.