Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biochem Biophys Res Commun ; 733: 150691, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39303525

RESUMEN

Neuroblastoma is the most common extra-cranial solid tumor diagnosed mostly in children below the age of five years and comprises of about 15 % of all paediatric cancer deaths. Tumor initiating cancer stem cells (CSCs) can be targeted for better treatment approaches. BASP1-AS1 is a long non coding (Lnc) RNA that is a divergent LncRNA for its coding gene brain abundant membrane attached signal protein 1 (BASP1). We had earlier demonstrated it to be expressed in foetus derived human neural progenitor cells (hNPCs), where it was a positive regulator of BASP1 and was critical for neural differentiation. In this study, we have investigated the role of BASP1-AS1 in CSCs derived from the human neuroblastoma cell line SH-SY5Y. We cultured SH-SY5Y cells on Poly-d-Lysine coated flasks in serum free media supplemented with growth factors, which led to the enrichment of CSCs as determined by marker expression. When grown on ultra-low attachment flasks, these cells formed CSCs enriched neurospheres. We examined the effects of BASP1-AS1 siRNA mediated knockdown on CSCs enriched SH-SY5Y cells and SH-SY5Y derived neurospheres. BASP1-AS1 knockdown decreased the levels of the corresponding gene BASP1 and the rate of cell proliferation of CSCs enriched cells along with low expression of Ki67. It also reduced the mRNA levels of stem cell and pluripotency gene markers (CD133, CD44, c-KIT, SOX2, OCT4 and NANOG), as also Wnt 2 and the Wnt pathway effector ß catenin. It also abrogated the formation of neurospheres in ultra-low attachment flasks. A similar effect on proliferation and stemness related properties was seen on BASP1 knockdown. BASP1-AS1 and its related pathways may provide a point of intervention for the CSCs population in neuroblastoma.


Asunto(s)
Células Madre Neoplásicas , Neuroblastoma , ARN Largo no Codificante , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proliferación Celular/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/genética , Proteínas de la Membrana , Proteínas Represoras
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167476, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39181517

RESUMEN

Hypoxic insult to the fetal brain causes loss of vulnerable premyelinating oligodendrocytes and arrested oligodendrocyte differentiation. Astrocytes influence oligodendrocyte differentiation and the astrocytic response to hypoxia could affect oligodendrocyte maturation under hypoxia. To identify pathways by which astrocytes influence oligodendroglial maturation in hypoxic injury, human fetal neural stem cell-derived astrocytes were exposed to 0.2 % oxygen for 48 hours. Transcriptomic analysis revealed the upregulation of the cholesterol-biosynthesis pathway in hypoxia-exposed astrocytes. Hypoxia-exposed primary astrocytes and astrocytic cell line (SVG) showed increased expression of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), squalene epoxidase (SQLE), apolipoprotein E (apoE) and ATP-binding cassette transporter 1 (ABCA1) on qPCR and Western blot. Hypoxic SVG also showed increased cholesterol content in cells and culture supernatants and increased cell surface expression of ABCA1. Interestingly hypoxia-exposed premyelinating oligodendrocytes (Mo3.13) showed reduced cholesterol along with decreased expression of HMGCR and SQLE on qPCR and Western blot. Exogenous cholesterol increased the differentiation of Mo3.13 as measured by increased expression of myelin basic protein (MBP) on flow cytometry. Hypoxia exposure resulted in increased cholesterol transport from astrocytes to oligodendrocytes in cocultures with BODIPY-cholesterol labelled SVG and membrane-labelled Mo3.13. As exogenous cholesterol enhanced oligodendrocyte differentiation, our findings indicate that increased cholesterol synthesis by astrocytes and transport to oligodendrocytes could supplement oligodendroglial maturation in conditions of hypoxic brain injury in neonates.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Astrocitos , Diferenciación Celular , Colesterol , Oligodendroglía , Oligodendroglía/metabolismo , Oligodendroglía/patología , Humanos , Colesterol/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Hipoxia de la Célula , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Células Cultivadas , Escualeno-Monooxigenasa/metabolismo , Escualeno-Monooxigenasa/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Línea Celular
3.
IBRO Neurosci Rep ; 17: 73-82, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39021664

RESUMEN

Neuroblastomas are pediatric tumors arising from undifferentiated cells of neural crest origin with stem cell-like characteristics. Dysregulation of Wnt/ß-catenin signaling has been shown to be linked to the development of various tumors. Activated Wnt signaling results in ß-catenin accumulation in the nucleus to support pro-neoplastic traits. DKK1, a secreted glycoprotein, is an inhibitor of Wnt signaling, and the addition of DKKI to the culture medium has been used to suppress the Wnt pathway. This study aimed to analyze the role of Dickopff-1 as a potential differentiating agent for the neuroblastoma cell line SH-SY5Y and neurospheres derived from it. The treatment of SH-5Y5Y derived neurospheres by DKK1 resulted in their disintegration and reduced proliferation markers like Ki67, PCNA. DKK1 treatment to the neurospheres also resulted in the loss of cancer stem cell markers like CD133, KIT and pluripotency markers like SOX2, OCT4, NANOG. DKK1 treatment caused reduction in mRNA expression of ß-catenin and TCF genes like TCF4, TCF12. When the SH-SY5Y cancer cells were grown under differentiating conditions, DKKI caused neuronal differentiation by itself, and in synergy with retinoic acid. This was verified by the expression of markers like MAPT, DCX, GAP43, ENO2 and also with changes in neurite length. We concluded that Wnt inhibition, as exemplified by DKK1 treatment, is therefore a possible differentiating condition and also suppresses the proliferative and cancer stemness related properties of SH-SY5Y neuroblastoma cells.

4.
PLoS One ; 19(6): e0305159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941353

RESUMEN

Biomedical research collaborations are to be contextualized in the larger global health agenda which also opens up new information pathways, expands research networks, and brings additional resources. A qualitative inquiry was employed to understand the perceived benefits and challenges of research collaborations by biomedical scientists from India (Global South [GS] country) and the Global North (GN). In-depth interviews were conducted with 47 biomedical scientists from India and 06 from the GN. The data was analyzed using the grounded theory approach. Complementarity of skills and resources, access to funds, improved quality of work, an opportunity to conduct multi-centric studies, development of collaborative networks, better and larger number of publications, mutual learning, opportunity to work with credible researchers, address common interests, leverage interpersonal and trusted relationships and larger societal good were some of the critical factors for eagerness of participants in joint scientific endeavors. However, the challenging aspects of dissent and disagreements were the power imbalance between the collaborators, the development of a trust deficit, and local administrative issues. The challenges reported in the current publication, also echoed in several previous publications can be surmounted and negotiated amicably when the rules of the game, law of the land, sharing of the credits, and interest of the collaborating parties are addressed and agreed up in a fair and just manner before the start of the collaboration. Overall biomedical partnerships are complex collaborations with its challenges, the processes are dynamic and outcomes are emergent. This requires constant and proactive evolution of the preparation, implementation and sustainability of the collaborative efforts be it national or international.


Asunto(s)
Investigación Biomédica , Conducta Cooperativa , Investigadores , India , Humanos , Investigadores/psicología , Femenino , Masculino , Cooperación Internacional
5.
Cell Signal ; 119: 111178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640981

RESUMEN

STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Cadherinas , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas de Unión al ARN , Factor de Transcripción STAT1 , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Cadherinas/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Regiones Promotoras Genéticas/genética , Movimiento Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología
6.
Curr Diabetes Rev ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676505

RESUMEN

The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.

7.
Comput Biol Chem ; 110: 108048, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471353

RESUMEN

The rise of drug resistance in Plasmodium falciparum, rendering current treatments ineffective, has hindered efforts to eliminate malaria. To address this issue, the study employed a combination of Systems Biology approach and a structure-based pharmacophore method to identify a target against P. falciparum. Through text mining, 448 genes were extracted, and it was discovered that plasmepsins, found in the Plasmodium genus, play a crucial role in the parasite's survival. The metabolic pathways of these proteins were determined using the PlasmoDB genomic database and recreated using CellDesigner 4.4.2. To identify a potent target, Plasmepsin V (PF13_0133) was selected and examined for protein-protein interactions (PPIs) using the STRING Database. Topological analysis and global-based methods identified PF13_0133 as having the highest centrality. Moreover, the static protein knockout PPIs demonstrated the essentiality of PF13_0133 in the modeled network. Due to the unavailability of the protein's crystal structure, it was modeled and subjected to a molecular dynamics simulation study. The structure-based pharmacophore modeling utilized the modeled PF13_0133 (PfPMV), generating 10 pharmacophore hypotheses with a library of active and inactive compounds against PfPMV. Through virtual screening, two potential candidates, hesperidin and rutin, were identified as potential drugs which may be repurposed as potential anti-malarial agents.


Asunto(s)
Antimaláricos , Simulación de Dinámica Molecular , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Reposicionamiento de Medicamentos , Estructura Molecular , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/química
8.
Chem Commun (Camb) ; 60(16): 2232-2235, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315091

RESUMEN

A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.

9.
Mol Neurobiol ; 61(8): 5738-5753, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38227271

RESUMEN

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.


Asunto(s)
Diferenciación Celular , Quinasas Janus , Células-Madre Neurales , Oligodendroglía , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Transducción de Señal/fisiología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Diferenciación Celular/fisiología , Quinasas Janus/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción STAT/metabolismo , Fosforilación , Línea Celular , Feto/citología , Células Madre Fetales/metabolismo , Interleucina-6/metabolismo
10.
Nanomedicine (Lond) ; 18(26): 1907-1919, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078434

RESUMEN

Aim: We investigated our previous finding of increased retention of poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) with metabolic inhibitors (MI) and studied the effect of some small molecule inhibitors on PLGA-NP assimilation. Materials & methods: Intracellular PLGA-NP colocalization in the presence of MI was investigated by confocal microscopy. Intracellular retention of PLGA-NPs by some small molecules was estimated by fluorescence microscopy and flow cytometry after Pulse/Chase experiments. Results: MI caused PLGA-NP colocalization in intracellular membranous structures, mainly endosomes and lysosomes. Some small molecule inhibitors demonstrated increased intracellular PLGA-NP accumulation. Conclusion: This study elucidates the movement of PLGA-NP in cells and suggests that clinically used small molecules can reduce their extrusion by enhancing their stay within intracellular vesicles, with possible clinically beneficial consequences.


Nanoparticles are increasingly being used to carry drugs for treatment of cancer. We wish to decrease their movement out of the cells. This may give time for them to unload their drugs. Cells were treated with nanoparticles for 30 min and observed. Then the nanoparticles were washed off. Cells were again observed after 30 min. Various intracellular trafficking inhibitors were also added. Nanoparticle retention and subcellular localization were measured. We found that nanoparticles are trapped in some membranous compartments within the cells after energy depletion. We also discovered some commonly used clinical molecules that can decrease the excretion of nanoparticles from the cells. These inhibitors can be utilized for increasing the intracellular stay of the drug-loaded nanoparticles.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Glicoles , Nanopartículas/química , Portadores de Fármacos/química
11.
Mol Carcinog ; 62(12): 1817-1831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606187

RESUMEN

The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroARNs , Humanos , Glioblastoma/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Movimiento Celular/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética
12.
J Biomol Struct Dyn ; : 1-13, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318006

RESUMEN

SARS-CoV-2 evolution has continued to generate variants, responsible for new pandemic waves locally and globally. Varying disease presentation and severity has been ascribed to inherent variant characteristics and vaccine immunity. This study analyzed genomic data from 305 whole genome sequences from SARS-CoV-2 patients before and through the third wave in India. Delta variant was reported in patients without comorbidity (97%), while Omicron BA.2 was reported in patients with comorbidity (77%). Tissue adaptation studies brought forth higher propensity of Omicron variants to bronchial tissue than lung, contrary to observation in Delta variants from Delhi. Study of codon usage pattern distinguished the prevalent variants, clustering them separately, Omicron BA.2 isolated in February grouped away from December strains, and all BA.2 after December acquired a new mutation S959P in ORF1b (44.3% of BA.2 in the study) indicating ongoing evolution. Loss of critical spike mutations in Omicron BA.2 and gain of immune evasion mutations including G142D, reported in Delta but absent in BA.1, and S371F instead of S371L in BA.1 could explain very brief period of BA.1 in December 2021, followed by complete replacement by BA.2. Higher propensity of Omicron variants to bronchial tissue, probably ensured increased transmission while Omicron BA.2 became the prevalent variant possibly due to evolutionary trade-off. Virus evolution continues to shape the epidemic and its culmination.Communicated by Ramaswamy H. Sarma.

13.
EJIFCC ; 34(1): 42-56, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124653

RESUMEN

Background: Inflammatory and hematological markers are used extensively for early prognostication and monitoring in COVID-19.We aimed to determine whether routinely prescribed laboratory markers can predict adverse outcome at presentation in COVID-19. Methods: This retrospective observational study was performed on 401 samples collected between July to December 2020 from COVID-19 positive subjects, admitted at All India Institute of Medical Sciences, Delhi, India. Clinical details and laboratory investigations within 3 days of COVID-19 positivity were obtained. Clinical outcomes were noted from patient medical records, till discharge or death. Laboratory parameters, with individually defined cut-offs, were used, either singly or in combination to distinguish survival and death for those having severe and non-severe disease at initial presentation. Findings: Total Leukocyte count, Absolute neutrophil count, Neutrophil to Lymphocyte ratio, C-Reactive Protein (CRP), Interleukin-6 (IL-6), Lactate Dehydrogenase, Ferritin and Lymphocyte to CRP ratio (LCR) were significantly altered at presentation in severe COVID-19 as compared to non-severe cases; and, also in those who died due to COVID-19 compared to those who survived. A combination of four markers, CRP (≥3.9mg/dL); IL-6 (≥45.37pg/ml); Ferritin (≥373ng/mL); 1/LCR ≥0.405 was found to strongly predict mortality in cases with non-severe presentation as also in severe cases. Conclusion and Interpretation: The combination of routinely used markers, CRP, IL-6, Ferritin and 1/LCR can be used to predict adverse outcomes, even in those presenting with mild to moderate disease. This would identify subset of patients who would benefit from closer monitoring than usual for non-severe disease.

14.
PLoS One ; 18(4): e0284539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079533

RESUMEN

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model's applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski's rule. Molecular Docking performed on Wild Type, and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes' stability allowing a comparative study on the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of darunavir and maybe used for further experimental studies. Our study may also be used as pipeline to search and design new potential inhibitors of HIV-1 proteases.


Asunto(s)
Antiinfecciosos , Inhibidores de la Proteasa del VIH , Seropositividad para VIH , VIH-1 , Humanos , Darunavir/farmacología , VIH-1/genética , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ligandos , Relación Estructura-Actividad Cuantitativa , Proteasa del VIH/genética , Proteasa del VIH/química
15.
Mol Neurobiol ; 60(5): 2910-2921, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36749560

RESUMEN

Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (ß-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.


Asunto(s)
Células-Madre Neurales , Vía de Señalización Wnt , Humanos , Células Cultivadas , Células-Madre Neurales/metabolismo , Neurogénesis , Diferenciación Celular , Feto , Hipoxia/metabolismo , Oxígeno/farmacología , Oxígeno/metabolismo
17.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508467

RESUMEN

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Ratones Transgénicos , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
18.
Appl Spectrosc ; 76(12): 1471-1481, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065942

RESUMEN

For the present work, solvent (toluene, o-xylene, chloroform, chlorobenzene, and 1,2-dichloroethane) and concentration-dependent (∼10-6-10-3 g ml-1) photophysical properties of poly(9,9-di-(2-ethylhexyl)-9-H-fluorene-2,7-vinylene) (PEFV) were investigated in detail in liquid media as well as thin films. Also, temperature-dependent (3-60 oC) fluorescence emission measurements of PEFV were conducted in liquid media. The steady-state and time-resolved data indicate the existence of weak interchain interaction in liquid media at high concentration. However, both ground-state aggregation and interchain interaction are present for PEFV in thin film. The interchain interaction plays a dominant role on the fluorescence emission of PEFV in thin film on the red side of the spectra.

19.
J Family Med Prim Care ; 11(5): 1633-1641, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35800563

RESUMEN

A medical postgraduate course in the field of Laboratory Medicine for the Bachelor of Medicine and Bachelor of Surgery (MBBS) degree holders has existed for more than two decades in India, initiated and offered by the All India Institute of Medical Sciences, New Delhi, which was created under the special Act of Parliament of India 1956. This course has recently been included in the draft of National Medical Commission's Post Graduate Regulation 2021 list of medical courses, and the foundation guidelines have been laid for other medical colleges and teaching hospitals across the country to start this course. This article, written purely in academic interest, describes the past, present and future of this postgraduate training program in India with an aim to answer several doubts regarding this unique and holistic course with a view to providing a direction to those who are willing to become a laboratory physician through this post-graduation.

20.
Front Immunol ; 13: 813888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720420

RESUMEN

FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-ß cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-ß1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-ß1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-ß1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-ß1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-ß1/2 secretion. Reduced TGF-ß1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-ß1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-ß1/2.


Asunto(s)
Cadherinas , Glioblastoma , Glioma , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Glioblastoma/patología , Glioma/genética , Glioma/metabolismo , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA