Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
iScience ; 26(5): 106525, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250326

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor central in the regulation of key cellular processes including cell metabolism, tissue differentiation, and regulation of the immune system. PPARγ is required for normal differentiation of the urothelium and is thought to be an essential driver of the luminal subtype of bladder cancer. However, the molecular components that regulate PPARG gene expression in bladder cancer remain unclear. Here, we developed an endogenous PPARG reporter system in luminal bladder cancer cells and performed genome-wide CRISPR knockout screening to identify bona fide regulators of PPARG gene expression. Functional validation of the dataset confirmed GATA3, SPT6, and the cohesin complex components SMC1A, and RAD21, as permissive upstream positive regulators of PPARG gene expression in luminal bladder cancer. In summary, this work provides a resource and biological insights to aid our understanding of PPARG regulation in bladder cancer.

2.
Respir Res ; 24(1): 124, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143066

RESUMEN

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Asunto(s)
Infecciones por VIH , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Disbiosis/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Perfilación de la Expresión Génica , Epitelio , Infecciones por VIH/epidemiología , Infecciones por VIH/genética
3.
Nat Commun ; 13(1): 735, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136059

RESUMEN

Insulin receptor (Insr) protein is present at higher levels in pancreatic ß-cells than in most other tissues, but the consequences of ß-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in ß-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined ß-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout ß-cells from female, but not male mice, whereas only male ßInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female ßInsrKO and ßInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter ß-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include ß-cell insulin resistance, which predicts that ß-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female ßInsrKO and ßInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of ß-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that ß-cell insulin resistance in the form of reduced ß-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hiperinsulinismo/genética , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Receptor de Insulina/genética , Animales , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Humanos , Hiperinsulinismo/sangre , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Transgénicos , RNA-Seq , Receptor de Insulina/deficiencia , Factores Sexuales
5.
BMC Genomics ; 22(1): 775, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717545

RESUMEN

BACKGROUND: The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS: We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION: This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.


Asunto(s)
Microbioma Gastrointestinal , Traumatismos de la Médula Espinal , Animales , Bacterias , Médula Espinal , Porcinos , Porcinos Enanos
6.
Cell Death Dis ; 12(11): 1012, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711805

RESUMEN

Melanoma originates from melanin-producing cells called melanocytes. Melanoma poses a great risk because of its rapid ability to spread and invade new organs. Cellular metastasis involves alteration in the gene expression profile and their transformation from epithelial to mesenchymal state. Despite of several advances, metastatic melanoma being a key cause of therapy failure and mortality remains poorly understood. p32 has been found to be involved in various physiological and pathophysiological conditions. However, the role of p32 in melanoma progression and metastasis remains underexplored. Here, we identify the role of p32 in the malignancy of both murine and human melanoma. p32 knockdown leads to reduced cell proliferation, migration, and invasion in murine and human melanoma cells. Furthermore, p32 promotes in vitro tumorigenesis, inducing oncogenes and EMT markers. Mechanistically, we show p32 regulates tumorigenic and metastatic properties through the Akt/PKB signaling pathway in both murine and human melanoma. Furthermore, p32 silencing attenuates melanoma tumor progression and lung metastasis in vivo, modulating the tumor microenvironment by inhibiting the angiogenesis, infiltration of macrophages, and leukocytes in mice. Taken together, our findings identify that p32 drives melanoma progression, metastasis, and regulates the tumor microenvironment. p32 can be a target of a novel therapeutic approach in the regulation of melanoma progression and metastasis.


Asunto(s)
Proteínas Portadoras/efectos adversos , Transición Epitelial-Mesenquimal/genética , Melanoma/genética , Proteínas Mitocondriales/efectos adversos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Humanos , Melanoma/mortalidad , Melanoma/fisiopatología , Ratones , Metástasis de la Neoplasia , Transducción de Señal , Análisis de Supervivencia , Transfección , Microambiente Tumoral
7.
J Fungi (Basel) ; 7(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34575761

RESUMEN

The experimental evolution of microorganisms exposed to extreme conditions can provide insight into cellular adaptation to stress. Typically, stress-sensitive species are exposed to stress over many generations and then examined for improvements in their stress tolerance. In contrast, when starting with an already stress-tolerant progenitor there may be less room for further improvement, it may still be able to tweak its cellular machinery to increase extremotolerance, perhaps at the cost of poorer performance under non-extreme conditions. To investigate these possibilities, a strain of extremely halotolerant black yeast Hortaea werneckii was grown for over seven years through at least 800 generations in a medium containing 4.3 M NaCl. Although this salinity is well above the optimum (0.8-1.7 M) for the species, the growth rate of the evolved H. werneckii did not change in the absence of salt or at high concentrations of NaCl, KCl, sorbitol, or glycerol. Other phenotypic traits did change during the course of the experimental evolution, including fewer multicellular chains in the evolved strains, significantly narrower cells, increased resistance to caspofungin, and altered melanisation. Whole-genome sequencing revealed the occurrence of multiple aneuploidies during the experimental evolution of the otherwise diploid H. werneckii. A significant overrepresentation of several gene groups was observed in aneuploid regions. Taken together, these changes suggest that long-term growth at extreme salinity led to alterations in cell wall and morphology, signalling pathways, and the pentose phosphate cycle. Although there is currently limited evidence for the adaptive value of these changes, they offer promising starting points for future studies of fungal halotolerance.

8.
Cell Rep ; 34(9): 108809, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657371

RESUMEN

Muscle differentiation is a multifaceted and tightly controlled process required for the formation of skeletal muscle fibers. Satellite cells are the direct cellular contributors to muscle repair in injuries or disorders. Here, we show that autotaxin (Atx) expression and activity is required for satellite cell differentiation. Conditional ablation of Atx or its pharmacological inhibition impairs muscle repair. Mechanistically, we identify LPAR1 as the key receptor in Atx-LPA signaling. Myogenic gene array and pathway analysis identified that Atx-LPA signaling activates ribosomal protein S6 kinase (S6K), an mTOR-dependent master regulator of muscle cell growth via LPAR1. Furthermore, Atx transgenic mice show muscle hypertrophic effects and accelerated regeneration. Intramuscular injections of Atx/LPA show muscle hypertrophy. In addition, the regulatory effects of Atx on differentiation are conserved in human myoblasts. This study identifies Atx as a critical master regulator in murine and human muscles, identifying a promising extracellular ligand in muscle formation, regeneration, and hypertrophy.


Asunto(s)
Lisofosfolípidos/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , Línea Celular , Femenino , Regulación de la Expresión Génica , Humanos , Hipertrofia , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Crecimiento del Músculo Esquelético , Serina-Treonina Quinasas TOR/metabolismo
9.
J Pers Med ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374349

RESUMEN

In this study 180 patients were consented and enrolled for pharmacogenomic testing based on current antidepressant/antipsychotic usage. Samples from patients were genotyped by PCR, MassArray, and targeted next generation sequencing. We also conducted a quantitative, frequency-based analysis of participants' perceptions using simple surveys. Pharmacogenomic information, including medication changes and altered dosing recommendations were returned to the pharmacists and used to direct patient therapy. Overwhelmingly, patients perceived pharmacists/pharmacies as an appropriate healthcare provider to deliver pharmacogenomic services. In total, 81 medication changes in 33 unique patients, representing 22% of all genotyped participants were recorded. We performed a simple drug cost analysis and found that medication adjustments and dosing changes across the entire cohort added $24.15CAD per patient per year for those that required an adjustment. Comparing different platforms, we uncovered a small number, 1.7%, of genotype discrepancies. We conclude that: (1). Pharmacists are competent providers of pharmacogenomic services. (2). The potential reduction in adverse drug responses and optimization of drug selection and dosing comes at a minimal cost to the health care system. (3). Changes in drug therapy, based on PGx tests, result in inconsequential changes in annual drug therapy cost with small cost increases just as likely as costs savings. (4). Pharmacogenomic services offered by pharmacists are ready for wide commercial implementation.

10.
Cell Commun Signal ; 18(1): 170, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109194

RESUMEN

BACKGROUND: Receptor for advanced glycation end products (RAGE) is a multi-ligand transmembrane receptor of the immunoglobulin superfamily. Lysophosphatidic acid (LPA) is a ligand for RAGE and is involved in physiological and pathophysiological conditions including cancer. However, RAGE-LPA axis is unexplored in lung and mammary cancer. METHODS: RAGE was silenced in A549, MDA MB-231 and MCF7 using RAGE shRNA. For in vitro tumorigenesis, we performed wound healing, colony formation, cell proliferation and invasion assays. Evaluation of expression of oncogenes, EMT markers and downstream signaling molecules was done by using western blot and immunohistochemistry. For subcellular expression of RAGE, immunofluorescence was done. In vivo tumorigenesis was assessed by intraperitoneal injection of cancer cells in nude mice. RESULTS: Here we show RAGE mediated profound increase in proliferation, migration and invasion of lung and mammary cancer cells via LPA in Protein kinase B (PKB) dependent manner. LPA mediated EMT transition is regulated by RAGE. In vivo xenograft results show significance of RAGE in LPA mediated lung and mammary tumor progression, angiogenesis and immune cell infiltration to tumor microenvironment. CONCLUSION: Our results establish the significance and involvement of RAGE in LPA mediated lung and mammary tumor progression and EMT transition via RAGE. RAGE-LPA axis may be a therapeutic target in lung and mammary cancer treatment strategies. Video Abstract.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias Pulmonares/patología , Lisofosfolípidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Neoplasias de la Mama/inmunología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Med Oncol ; 37(10): 88, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902730

RESUMEN

Non-muscle myosin IIA heavy chain (MYH9) has been implicated in many physiological and pathological functions including cell adhesion, polarity, motility to cancer. However, its role in melanoma remains unexplored. The aim of our study was to evaluate the role of MYH9 in melanoma tumor development and metastasis and further to find out the potential underlying mechanisms. In this study, we evaluated the in vitro migratory and invasive properties and in vivo tumor development and metastasis in C57BL/6 mice by silencing MYH9 in B16F10 melanoma cells. Knocking down MYH9 enhanced migration and invasiveness of B16F10 cells in vitro. Furthermore, MYH9 silencing accelerated tumor growth and metastasis in melanoma subcutaneous and intravenous mouse models. Next, oncogenes analysis revealed epithelial-mesenchymal transition and Erk signaling pathway are being regulated with MYH9 expression. Finally, MYH9 silencing in B16F10 cells modulates the tumor microenvironment by manipulating the leukocytes and macrophages infiltration in tumors. These findings established the opposing role of MYH9 as a tumor suppressor in melanoma suggesting specific MYH9 based approaches in therapeutics.


Asunto(s)
Melanoma Experimental/patología , Cadenas Pesadas de Miosina/metabolismo , Microambiente Tumoral/fisiología , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica/patología
12.
PLoS One ; 15(1): e0217255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31931516

RESUMEN

Natural competence allows bacteria to respond to environmental and nutritional cues by taking up free DNA from their surroundings, thus gaining both nutrients and genetic information. In the Gram-negative bacterium Haemophilus influenzae, the genes needed for DNA uptake are induced by the CRP and Sxy transcription factors in response to lack of preferred carbon sources and nucleotide precursors. Here we show that one of these genes, HI0659, encodes the antitoxin of a competence-regulated toxin-antitoxin operon ('toxTA'), likely acquired by horizontal gene transfer from a Streptococcus species. Deletion of the putative toxin (HI0660) restores uptake to the antitoxin mutant. The full toxTA operon was present in only 17 of the 181 strains we examined; complete deletion was seen in 22 strains and deletions removing parts of the toxin gene in 142 others. In addition to the expected Sxy- and CRP-dependent-competence promoter, HI0659/660 transcript analysis using RNA-seq identified an internal antitoxin-repressed promoter whose transcription starts within toxT and will yield nonfunctional protein. We propose that the most likely effect of unopposed toxin expression is non-specific cleavage of mRNAs and arrest or death of competent cells in the culture. Although the high frequency of toxT and toxTA deletions suggests that this competence-regulated toxin-antitoxin system may be mildly deleterious, it could also facilitate downregulation of protein synthesis and recycling of nucleotides under starvation conditions. Although our analyses were focused on the effects of toxTA, the RNA-seq dataset will be a useful resource for further investigations into competence regulation.


Asunto(s)
ADN/genética , Haemophilus influenzae/genética , Streptococcus/genética , Sistemas Toxina-Antitoxina/genética , Factores de Transcripción/genética , Antitoxinas/genética , ADN/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Transferencia de Gen Horizontal/genética , Operón/genética , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/genética , RNA-Seq , Transactivadores/genética , Transformación Bacteriana/genética
13.
Mol Genet Genomic Med ; 7(10): e00961, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475481

RESUMEN

BACKGROUND: Profiling the entire genome at base pair resolution in a single test offers novel insights into disease by means of dissection of genetic contributors to phenotypic features. METHODS: We performed genome sequencing for a patient who presented with atypical hereditary sensory and autonomic neuropathy, severe epileptic encephalopathy, global developmental delay, and growth hormone deficiency. RESULTS: Assessment of the variants detected by mapped sequencing reads followed by Sanger confirmation revealed that the proband is a compound heterozygote for rare variants within RETREG1 (FAM134B), a gene associated with a recessive form of hereditary sensory and autonomic neuropathy, but not with epileptic encephalopathy or global developmental delay. Further analysis of the data also revealed a heterozygous missense variant in DNM1L, a gene previously implicated in an autosomal dominant encephalopathy, epilepsy, and global developmental delay and confirmed by Sanger sequencing to be a de novo variant not present in parental genomes. CONCLUSIONS: Our findings emphasize the importance of genome-wide sequencing in patients with a well-characterized genetic disease with atypical presentation. This approach reduces the potential for misdiagnoses.


Asunto(s)
Dinaminas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/diagnóstico , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Neuropatías Hereditarias Sensoriales y Autónomas/complicaciones , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Mutación Missense , Linaje
14.
J Neurotrauma ; 36(15): 2358-2371, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30827169

RESUMEN

Spinal cord injury (SCI) is a devastating condition with variability in injury mechanisms and neurologic recovery. Spinal cord impairment after SCI is measured and classified by a widely accepted standard neurological examination. In the very acute stages post-injury, however, this examination is extremely challenging (and often impossible) to conduct and has modest prognostic value in terms of neurological recovery. The lack of objective tools to classify injury severity and predict outcome is a barrier for clinical trials and thwarts development of therapies for those with SCI. Biological markers (biomarkers) represent a promising, complementary approach to these challenges because they represent an unbiased approach to classify injury severity and predict neurological outcome. Identification of a suitable panel of molecular biomarkers would comprise a fundamental shift in how patients with acute SCI are evaluated, stratified, and treated in clinical trials. MicroRNA are attractive biomarker candidates in neurological disorders for several reasons, including their stability in biological fluids, their conservation between humans and model mammals, and their tissue specificity. In this study, we used next-generation sequencing to identify microRNA associated with injury severity within the cerebrospinal fluid (CSF) and serum of human patients with acute SCI. The CSF and serum samples were obtained 1-5 days post-injury from 39 patients with acute SCI (24 American Spinal Injury Association Impairment Scale [AIS] A, 8 AIS B, 7 AIS C) and from five non-SCI controls. We identified a severity-dependent pattern of change in microRNA expression in CSF and identified a set of microRNA that are diagnostic of baseline AIS classification and prognostic of neurological outcome six months post-injury. The data presented here provide a comprehensive description of the CSF and serum microRNA expression changes that occur after acute human SCI. This data set reveals microRNA candidates that warrant further evaluation as biomarkers of injury severity after SCI and as key regulators in other neurological disorders.


Asunto(s)
MicroARNs/sangre , MicroARNs/líquido cefalorraquídeo , Índice de Severidad de la Enfermedad , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/líquido cefalorraquídeo , Adulto , Anciano , Biomarcadores/sangre , Vértebras Cervicales/lesiones , Estudios de Cohortes , Femenino , Humanos , Vértebras Lumbares/lesiones , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Vértebras Torácicas/lesiones
15.
Biochimie ; 154: 55-61, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30076903

RESUMEN

Receptor for Advanced Glycation End product (RAGE) is a multiligand receptor implicated in diverse pathological conditions such as diabetes, atherosclerosis, cancer and neural diseases. Extracellular, RAGE consists of V, C1 and C2 domains. Here, we show RAGE exists as a monomer in equilibrium with a fraction of a covalently linked dimer of monomers via its V domain through cysteine. In order to understand the functional implication of this dimer, we examined the binding capacity and functional potential of RAGE dimer via advanced glycation end products (AGEs) which shows enhanced binding capacity towards V domain, ERK phosphorylation, cytokine release and actin polymerization ability of the dimeric form for AGEs compared with the reduced monomeric form. Our data, suggests that the dimeric state of RAGE controls its function and ligand mediated signaling which may play important role in RAGE mediated various diseases.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Multimerización de Proteína , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Células A549 , Animales , Cisteína/química , Cisteína/genética , Disulfuros/química , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Ratones , Dominios Proteicos , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética
16.
Respir Res ; 19(1): 140, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053882

RESUMEN

BACKGROUND: Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS: SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS: PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS: Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.


Asunto(s)
Infecciones por VIH/microbiología , Microbiota/fisiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/fisiología , Anciano , Broncoscopía/métodos , Estudios de Cohortes , Femenino , Infecciones por VIH/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
18.
FASEB J ; 32(3): 1196-1206, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29122848

RESUMEN

Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Homeostasis , Insulina/fisiología , Obesidad/prevención & control , Aumento de Peso/genética , Adiposidad , Animales , Peso Corporal , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/patología
19.
Cell Rep ; 20(2): 451-463, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700945

RESUMEN

The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/- mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.


Asunto(s)
Resistencia a la Insulina/fisiología , Insulina/metabolismo , Animales , Composición Corporal/fisiología , Femenino , Glucosa/metabolismo , Insulina/genética , Masculino , Ratones , Ratones Noqueados , Proteómica , Transducción de Señal/fisiología
20.
Open Biol ; 7(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28592509

RESUMEN

The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, 'prototrophic' versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.


Asunto(s)
Saccharomyces cerevisiae/genética , Estrés Fisiológico , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA