RESUMEN
Phototoxicity and skin cancer are severe adverse effects of the anti-fungal drug voriconazole (VOR). These adverse effects resemble those seen in xeroderma pigmentosum, caused by defective DNA nucleotide excision repair (NER), and we show that VOR decreases NER capacity. We show that VOR treatment does not perturb the expression of NER, or other DNA damage-related genes, but that VOR localizes to heterochromatin, in complexes containing histone acetyltransferase general control of amino-acid synthesis 5-like 2. Impairment of general control of amino-acid synthesis 5-like 2 binding to histone H3 reduced acetylation of H3, restricting damage-dependent chromatin unfolding, thereby reducing NER initiation. Restoration of H3 histone acetylation using histone deacetylase inhibitors, rescued VOR-induced NER repression, thus offering a preventive therapeutic option. These findings underline the importance of DNA damage-dependent chromatin remodeling as an important prerequisite of functional DNA repair.
Asunto(s)
Antifúngicos , Daño del ADN , Reparación del ADN , Histonas , Neoplasias Cutáneas , Voriconazol , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Voriconazol/farmacología , Voriconazol/efectos adversos , Daño del ADN/efectos de los fármacos , Humanos , Reparación del ADN/efectos de los fármacos , Antifúngicos/farmacología , Histonas/metabolismo , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Acetilación/efectos de los fármacosRESUMEN
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.
RESUMEN
Rationale: Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. Objectives: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. Methods: The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T-cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with NSCLC and patients with melanoma. Measurements and Main Results: Across both cohorts, patients in whom pneumonitis developed had higher pretreatment levels of immunoglobulin G autoantibodies targeting surfactant protein (SP)-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ IFN-γ-positive SP-B-specific T cells and expanding T-cell clonotypes recognizing this protein, accompanied by a proinflammatory serum proteomic profile. Conclusions: Our data suggest that the cooccurrence of SP-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pretreatment levels of these antibodies may represent a potential biomarker for an increased risk of developing pneumonitis, and on-treatment levels may provide a diagnostic aid.
Asunto(s)
Autoanticuerpos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Neumonía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Anciano , Neumonía/inmunología , Neumonía/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/inmunología , Proteína B Asociada a Surfactante Pulmonar/sangre , Proteína B Asociada a Surfactante Pulmonar/inmunología , Estudios de CohortesRESUMEN
Recent advances in melanoma therapy have significantly improved the prognosis of metastasized melanoma. However, large therapeutic gaps remain that need to be closed by new strategies. Antiapoptotic Bcl-2 proteins critically contribute to apoptosis deficiency and therapy resistance. They can be targeted by BH3 mimetics, small molecule antagonists that mimic the Bcl-2 homology domain 3 (BH3) of proapoptotic BH3-only proteins. By applying in vitro experiments, we aimed to obtain an overview of the possible suitability of BH3 mimetics for future melanoma therapy. Thus, we investigated the effects of ABT-737 and ABT-263, which target Bcl-2, Bcl-xL and Bcl-w as well as the Bcl-2-selective ABT-199 and the Mcl-1-selective S63845, in a panel of four BRAF-mutated and BRAF-WT melanoma cell lines. None of the inhibitors showed significant effectiveness when used alone; however, combination of S63845 with each one of the three ABTs almost completely abolished melanoma cell survival and induced apoptosis in up to 50-90% of the cells. Special emphasis was placed here on the understanding of the downstream pathways involved, which may allow improved applications of these strategies. Thus, cell death induction was correlated with caspase activation, loss of mitochondrial membrane potential, phosphorylation of histone H2AX, and ROS production. Caspase dependency was demonstrated by a caspase inhibitor, which blocked all effects. Upregulation of Mcl-1, induced by S63845 itself, as reported previously, was blocked by the combinations. Indeed, Mcl-1, as well as XIAP (X-linked inhibitor of apoptosis), were strongly downregulated by combination treatments. These findings demonstrate that melanoma cells can be efficiently targeted by BH3 mimetics, but the right combinations have to be selected. The observed pronounced activation of apoptosis pathways demonstrates the decisive role of apoptosis in the loss of cell viability by BH3 mimetics.
Asunto(s)
Antineoplásicos , Melanoma , Pirimidinas , Tiofenos , Humanos , Melanoma/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína bcl-X/metabolismo , Apoptosis , Caspasas/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacologíaRESUMEN
BACKGROUND: MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib. METHODS: The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi. RESULTS: Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib. CONCLUSIONS: Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.
Asunto(s)
Disulfiram , Melanoma , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas B-raf , Cobre , Ditiocarba , Modelos Animales de Enfermedad , Quinasas de Proteína Quinasa Activadas por MitógenosRESUMEN
INTRODUCTION: Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS: The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS: Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION: In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.
RESUMEN
BACKGROUND: The role of autoreactive T cells on the course of Coronavirus disease-19 (COVID-19) remains elusive. Type II pneumocytes represent the main target cells of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autoimmune responses against antigens highly expressed in type II pneumocytes may influence the severity of COVID-19 disease. OBJECTIVE: The aim of this study was to investigate autoreactive T cell responses against self-antigens highly expressed in type II pneumocytes in the blood of COVID-19 patients with severe and non-severe disease. METHODS: We collected blood samples of COVID-19 patients with varying degrees of disease severity and of pre-pandemic controls. T cell stimulation assays with peptide pools of type II pneumocyte antigens were performed in two independent cohorts to analyze the autoimmune T cell responses in patients with non-severe and severe COVID-19 disease. Target cell lysis assays were performed with lung cancer cell lines to determine the extent of cell killing by type II PAA-specific T cells. RESULTS: We identified autoreactive T cell responses against four recently described self-antigens highly expressed in type II pneumocytes, known as surfactant protein A, surfactant protein B, surfactant protein C and napsin A, in the blood of COVID-19 patients. These antigens were termed type II pneumocyte-associated antigens (type II PAAs). We found that patients with non-severe COVID-19 disease showed a significantly higher frequency of type II PAA-specific autoreactive T cells in the blood when compared to severely ill patients. The presence of high frequencies of type II PAA-specific T cells in the blood of non-severe COVID-19 patients was independent of their age. We also found that napsin A-specific T cells from convalescent COVID-19 patients could kill lung cancer cells, demonstrating the functional and cytotoxic role of these T cells. CONCLUSIONS: Our data suggest that autoreactive type II PAA-specific T cells have a protective role in SARS-CoV-2 infections and the presence of high frequencies of these autoreactive T cells indicates effective viral control in COVID-19 patients. Type II-PAA-specific T cells may therefore promote the killing of infected type II pneumocytes and viral clearance.
RESUMEN
BACKGROUND: Currently, there remains an incomplete view of cancer stem cells (CSCs) in solid tumours. METHODS: We studied a panel of putative CSC surface markers (ALDH1A1, ABCG2, CD44v7/8, CD44v10, CD133, CD271, and Nestin) in 40 established melanoma cell lines and four early-passage melanoma strains by flow cytometry. We additionally examined 40 formalin-fixed paraffin-embedded melanoma tissues using immunofluorescence microscopy. This was compared with their expression in healthy skin, normal differentiated melanocytes and fibroblasts. RESULTS: Most of the putative CSC markers were expressed by both melanoma cell lines and tissues. When present, these proteins were expressed by the majority of cells in the population. However, the expression of these markers by cells in healthy skin sections, normal differentiated melanocytes, and fibroblasts revealed that differentiated non-malignant cells also expressed CSC markers indicating that they lack of specificity for CSCs. Culturing cell lines under conditions more characteristic of the tumour microenvironment upregulated CSC marker expressions in a proportion of cell lines, which correlated with improved cell growth and viability. CONCLUSIONS: The testing of melanoma cell lines (n = 40), early-passage cell strains (n = 4), and melanoma tissues (n = 40) showed that several putative CSC markers (ALDH1A1, ABCG2, CD44v7/8, CD44v10, CD133, CD271, and Nestin) are commonly present in a large proportion of melanoma cells in vitro and in situ. Further, we showed that these putative markers lack specificity for CSCs because they are also expressed in differentiated non-malignant cell types (melanocytes, fibroblasts, and skin), which could limit their use as therapeutic targets. These data are consistent with the emerging notion of CSC plasticity and phenotype switching within cancer cell populations.
Asunto(s)
Biomarcadores de Tumor , Melanoma , Humanos , Nestina/metabolismo , Biomarcadores de Tumor/genética , Antígenos CD/metabolismo , Melanoma/genética , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Adapaleno/metabolismo , Antígeno AC133/metabolismo , Microambiente TumoralRESUMEN
The efficacy of targeting the MAPK signaling pathway in patients with melanoma is limited by the rapid development of resistance mechanisms that result in disease relapse. In this article, we focus on targeting the DNA repair pathway as an antimelanoma therapy, especially in MAPK inhibitor resistant melanoma cells using PARP inhibitors. We found that MAPK inhibitor resistant melanoma cells are particularly sensitive to PARP inhibitor treatment due to a lower basal expression of the DNA damage sensor ataxia-telangiectasia mutated (ATM). As a consequence, MAPK inhibitor resistant melanoma cells have decreased homologous recombination repair activity leading to a reduced repair of double-strand breaks caused by the PARP inhibitors. We validated the clinical relevance of our findings by ATM expression analysis in biopsies from patients with melanoma before and after development of resistance to MAPK inhibitors. Furthermore, we show that inhibition of the MAPK pathway induces a homologous recombination repair deficient phenotype in melanoma cells irrespective of their MAPK inhibitor sensitivity status. MAPK inhibition results in a synthetic lethal interaction of a combinatorial treatment with PARP inhibitors, which significantly reduces melanoma cell growth in vitro and in vivo. In conclusion, this study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression. Significance: We show that MAPK inhibitor resistant melanoma cells exhibit low ATM expression increasing their sensitivity toward PARP inhibitors and that a combination of MAPK/PARP inhibitors act synthetically lethal in melanoma cells. Our study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression, which could serve as a novel biomarker for treatment response.
Asunto(s)
Ataxia Telangiectasia , Melanoma , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recurrencia Local de Neoplasia , Melanoma/tratamiento farmacológico , Proliferación Celular , BiopsiaRESUMEN
BACKGROUND: The mitogen-activated protein kinase (MAPK) signaling pathway is frequently hyperactivated in malignant melanoma and its inhibition has proved to be an efficient treatment option for cases harboring BRAFV600 mutations (BRAFMut). However, there is still a significant need for effective targeted therapies for patients with other melanoma subgroups characterized by constitutive MAPK activation, such as tumors with NRAS or NF-1 alterations (NRASMut, NF-1LOF), as well as for patients with MAPK pathway inhibitor-resistant BRAFMut melanomas, which commonly exhibit a reactivation of this pathway. p90 ribosomal S6 kinases (RSKs) represent central effectors of MAPK signaling, regulating cell cycle progression and survival. METHODS: RSK activity and the functional effects of its inhibition by specific small molecule inhibitors were investigated in established melanoma cell lines and patient-derived short-term cultures from different MAPK pathway-hyperactivated genomic subgroups (NRASMut, BRAFMut, NF-1LOF). Real-time qPCR, immunoblots and flow cytometric cell surface staining were used to explore the molecular changes following RSK inhibition. The effect on melanoma cell growth was evaluated by various two- and three-dimensional in vitro assays as well as with melanoma xenograft mouse models. Co-cultures with gp100- or Melan-A-specific cytotoxic T cells were used to assess immunogenicity of melanoma cells and associated T-cell responses. RESULTS: In line with elevated activity of the MAPK/RSK signaling axis, growth and survival of not only BRAFMut but also NRASMut and NF-1LOF melanoma cells were significantly impaired by RSK inhibitors. Intriguingly, RSK inhibition was particularly effective in three-dimensional growth settings with long-term chronic drug exposure and suppressed tumor cell growth of in vivo melanoma models. Additionally, our study revealed that RSK inhibition simultaneously promoted differentiation and immunogenicity of the tumor cells leading to enhanced T-cell activation and melanoma cell killing. CONCLUSIONS: Collectively, RSK inhibitors exhibited both multi-layered anti-tumor efficacy and broad applicability across different genomic melanoma subgroups. RSK inhibition may therefore represent a promising novel therapeutic strategy for malignant melanoma with hyperactivated MAPK signaling.
Asunto(s)
Melanoma , Proteínas Quinasas S6 Ribosómicas 90-kDa , Humanos , Animales , Ratones , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Proto-Oncogénicas B-raf , Evasión Inmune , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ciclo Celular , Melanoma Cutáneo MalignoRESUMEN
BACKGROUND: Recent advances in digital pathology have enabled accurate and standardised enumeration of tumour-infiltrating lymphocytes (TILs). Here, we aim to evaluate TILs as a percentage electronic TIL score (eTILs) and investigate its prognostic and predictive relevance in cutaneous melanoma. METHODS: We included stage I to IV cutaneous melanoma patients and used hematoxylin-eosin-stained slides for TIL analysis. We assessed eTILs as a continuous and categorical variable using the published cut-off of 16.6% and applied Cox regression models to evaluate associations of eTILs with relapse-free, distant metastasis-free, and overall survival. We compared eTILs of the primaries with matched metastasis. Moreover, we assessed the predictive relevance of eTILs in therapy-naïve metastases according to the first-line therapy. FINDINGS: We analysed 321 primary cutaneous melanomas and 191 metastatic samples. In simple Cox regression, tumour thickness (p < 0.0001), presence of ulceration (p = 0.0001) and eTILs ≤16.6% (p = 0.0012) were found to be significant unfavourable prognostic factors for RFS. In multiple Cox regression, eTILs ≤16.6% (p = 0.0161) remained significant and downgraded the current staging. Lower eTILs in the primary tissue was associated with unfavourable relapse-free (p = 0.0014) and distant metastasis-free survival (p = 0.0056). In multiple Cox regression adjusted for tumour thickness and ulceration, eTILs as continuous remained significant (p = 0.019). When comparing TILs in primary tissue and corresponding metastasis of the same patient, eTILs in metastases was lower than in primary melanomas (p < 0.0001). In therapy-naïve metastases, an eTILs >12.2% was associated with longer progression-free survival (p = 0.037) and melanoma-specific survival (p = 0.0038) in patients treated with anti-PD-1-based immunotherapy. In multiple Cox regression, lactate dehydrogenase (p < 0.0001) and eTILs ≤12.2% (p = 0.0130) were significantly associated with unfavourable melanoma-specific survival. INTERPRETATION: Assessment of TILs is prognostic in primary melanoma samples, and the eTILs complements staging. In therapy-naïve metastases, eTILs ≤12.2% is predictive of unfavourable survival outcomes in patients receiving anti-PD-1-based therapy. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.
Asunto(s)
Aprendizaje Profundo , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Pronóstico , Linfocitos Infiltrantes de Tumor/patología , Recurrencia Local de Neoplasia/patología , Melanoma Cutáneo MalignoRESUMEN
Metastatic uveal melanoma (UM) is a rare form of melanoma differing from cutaneous melanoma by etiology, prognosis, driver mutations, pattern of metastases and poor response rate to immune checkpoint inhibitors (ICI). Recently, a bispecific gp100 peptide-HLA-directed CD3 T cell engager, tebentafusp, has been approved for the treatment of HLA-A*02:01 metastatic or unresectable UM. While the treatment regime is complex with weekly administrations and close monitoring, the response rate is limited. Only a few data exist on combined ICI in UM after previous progression on tebentafusp. In this case report, we present a patient with metastatic UM who first suffered extensive progression under treatment with tebentafusp but in the following had an excellent response to combined ICI. We discuss possible interactions that could explain responsiveness to ICI after pretreatment with tebentafusp in advanced UM.
RESUMEN
BACKGROUND: Immune checkpoint inhibition (ICI) has changed the melanoma treatment spectrum. Few studies have examined the characteristics and long-term outcomes of patients achieving complete response (CR) under ICI. MATERIALS AND METHODS: We evaluated patients with unresectable stage IV melanoma treated with first-line ICI. The characteristics of those achieving CR were compared with those not achieving CR. Progression-free survival (PFS) and overall survival (OS) were assessed. Late-onset toxicities, response to second-line treatment, the prognostic value of clinicopathologic features, and blood markers were examined. RESULTS: A total of 265 patients were included; 41 (15.5%) achieved CR, while 224 (84.5%) had progressive disease, stable disease, or partial response. At the therapy start, those who had CR were more likely to be older than 65 years of age (p = 0.013), have a platelet-to-lymphocyte ratio below 213 (p = 0.036), and have lower lactate dehydrogenase levels (p = 0.008) than those not achieving a CR. For those who discontinued therapy after CR, the median follow-up time after CR was 56 months (interquartile range [IQR] 52-58) and the median time from CR to therapy end was 10 months (IQR 1-17). Five-year PFS after CR was 79% and 5-year OS was 83%. Most complete responders had a normalization of S100 at the time of CR (p < 0.001). In simple Cox regression analysis, age below 77 years at CR (p = 0.04) was associated with better prognosis after CR. Eight patients received second-line ICI; disease control was seen in 63%. Late immune-related toxicities occurred in 25% of patients, most being cutaneous immune-related toxicities. CONCLUSIONS: Response, according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, is, until now, the most important prognostic factor, and CR is a valid surrogate marker for long-term survival in patients treated with ICI. Our results highlight the importance of investigating the optimal therapy duration in complete responders.
Asunto(s)
Melanoma , Humanos , Anciano , Pronóstico , Inducción de Remisión , Supervivencia sin Progresión , Inmunoterapia , Estudios RetrospectivosRESUMEN
Targeting of MAP kinase pathways by BRAF inhibitors has evolved as a key therapy for BRAF-mutated melanoma. However, it cannot be applied for BRAF-WT melanoma, and also, in BRAF-mutated melanoma, tumor relapse often follows after an initial phase of tumor regression. Inhibition of MAP kinase pathways downstream at ERK1/2, or inhibitors of antiapoptotic Bcl-2 proteins, such as Mcl-1, may serve as alternative strategies. As shown here, the BRAF inhibitor vemurafenib and the ERK inhibitor SCH772984 showed only limited efficacy in melanoma cell lines, when applied alone. However, in combination with the Mcl-1 inhibitor S63845, the effects of vemurafenib were strongly enhanced in BRAF-mutated cell lines, and the effects of SCH772984 were enhanced in both BRAF-mutated and BRAF-WT cells. This resulted in up to 90% loss of cell viability and cell proliferation, as well as in induction of apoptosis in up to 60% of cells. The combination of SCH772984/S63845 resulted in caspase activation, processing of poly (ADP-ribose) polymerase (PARP), phosphorylation of histone H2AX, loss of mitochondrial membrane potential, and cytochrome c release. Proving the critical role of caspases, a pan-caspase inhibitor suppressed apoptosis induction, as well as loss of cell viability. As concerning Bcl-2 family proteins, SCH772984 enhanced expression of the proapoptotic Bim and Puma, as well as decreased phosphorylation of Bad. The combination finally resulted in downregulation of antiapoptotic Bcl-2 and enhanced expression of the proapoptotic Noxa. In conclusion, combined inhibition of ERK and Mcl-1 revealed an impressive efficacy both in BRAF-mutated and WT melanoma cells, and may thus represent a new strategy for overcoming drug resistance.
Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Regulación hacia Arriba , Supervivencia Celular , Potencial de la Membrana Mitocondrial , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Melanoma/metabolismo , Caspasas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular TumoralRESUMEN
PURPOSE: Patients with cutaneous melanoma stage I/IIA disease are currently not eligible for adjuvant therapy, despite their risk for relapses and death. This study validates the ability of a model combining clinicopathologic factors with gene expression profiling (CP-GEP) to identify patients at high risk for disease recurrence in stage I/II and subgroup stage I/IIA. PATIENTS AND METHODS: 543 patients with stage I/II primary cutaneous melanoma from the University of Tuebingen diagnosed between 2000 and 2017 were analysed. All patients received sentinel lymph node biopsy (SLNB). Analysis was conducted for a separate group of 80 patients who did not undergo SLNB. RESULTS: CP-GEP stratified 424 stage I/IIA patients (78% of the cohort) according to their risk for recurrence, with five-year relapse-free survival (RFS) rates of 77.8% and 93% for CP-GEP high risk (195 patients) and low risk (229 patients), respectively, and hazard ratio of 3.53 (p-value <0.001). In patients who did not receive SLNB biopsy, CP-GEP captured 6 out of 7 relapses. CONCLUSION: CP-GEP can be used to identify primary cutaneous melanoma patients with a high risk for disease recurrence - especially for stage I/IIA, who are considered low risk by AJCC 8th. These patients may benefit from adjuvant therapy. Also, in the future, when SLNB may become irrelevant, CP-GEP may serve as a risk stratification tool.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Pronóstico , Perfilación de la Expresión Génica , Biopsia del Ganglio Linfático Centinela , Recurrencia , Melanoma Cutáneo MalignoRESUMEN
Ascorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model. To investigate the effects of ascorbate on the B16F10 cell line in vitro, viability, cellular impedance, and ROS production were analyzed. In vivo, C57BL/6NCrl mice were subcutaneously injected into the right flank with B16F10 cells and tumor-bearing mice were treated intraperitoneally with ascorbate (3 g/kg bodyweight), immunotherapy (anti-programmed cell death protein 1 (PD1) antibody J43; 2 mg/kg bodyweight), or both treatments combined. The efficacy and toxicity were analyzed by measuring the respective tumor sizes and mouse weights accompanied by histological analysis of the protein levels of proliferating cell nuclear antigen (Pcna), glucose transporter 1 (Glut-1), and CD3. Treatment of B16F10 melanoma-carrying mice with high-dose ascorbate yielded plasma levels in the pharmacologically effective range, and ascorbate showed efficacy as a monotherapy and when combined with PD1 inhibition. Our data suggest the applicability of ascorbate as an additional therapeutic agent that can be safely combined with immunotherapy and has the potential to potentiate anti-PD1-based immune checkpoint blockades.
Asunto(s)
Antineoplásicos , Melanoma , Animales , Ratones , Especies Reactivas de Oxígeno , Ratones Endogámicos C57BL , Melanoma/tratamiento farmacológico , Antineoplásicos/farmacología , Melanoma Cutáneo MalignoRESUMEN
Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.
Asunto(s)
COVID-19 , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Líquido del Lavado Bronquioalveolar/química , Tensoactivos , Autoanticuerpos , Inmunoglobulina ARESUMEN
BACKGROUND: Macrophages are an important component of the innate immune system. They are abbreviated as Mφ, MΦ, or MP. The name is derived from Greek: large eaters, µακρóς (makrós)â¯= large, φαγεá¿ν (phagein)â¯= to eat, because they engulf and digest pathogens. Tumor-associated macrophages (TAMs) are associated with drug resistance in cancers, including melanoma, and targeting them may improve cancer treatment. OBJECTIVES: The purpose of this article is to examine the role of TAMs in cancer, particularly in melanoma. The relationship between TAM and treatment resistance and their potential application in the treatment of melanoma are discussed. MATERIALS AND METHODS: A literature search in PubMed and Google Scholar databases for TAM and melanoma was performed. Clinical trials were searched via clinicaltrials.gov and graphical representations were created using BioRender. RESULTS: In melanoma, macrophages are among the most abundant immune cells in the tumor microenvironment (TME). TAMs are associated with poor prognosis and resistance. They are involved in tumorigenesis and metastasis development. M2 is the predominant type of TAM and the M2 markers CD163 and CD204 are unfavorable prognostic biomarkers. Therapeutic approaches aim to decrease their recruitment, modulate their function, or reprogram them. Treatment using chimeric antigen receptor (CAR)-M cells and nanoparticles are currently being investigated. Drugs being tested for melanoma include signal transducer and activator of transcription 3 (STAT3) inhibitors, macrophage colony-stimulating factor (M-CSF) antagonists, interferons (IFN), talimogene laherparepvec (TVEC), histone deacetylase (HDAC) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, colony-stimulating factor 1 receptor (CSF-1R) antagonists, CD40 agonists, arginase 1 (ARG-1) inhibitors, and phosphoinositide 3kinase γ (PI3K-γ) inhibitors. CONCLUSIONS: TAMs participate in developing resistance to current melanoma therapies. Treatment directed against them may help reduce the development of resistance and improve survival.
Asunto(s)
Melanoma , Viroterapia Oncolítica , Humanos , Melanoma/terapia , Fosfatidilinositol 3-Quinasas , Macrófagos , Microambiente TumoralRESUMEN
Long-term, curative treatment of cutaneous T-cell lymphomas (CTCL) remains a major challenge. Therapy resistance is often based on apoptosis deficiency, and may depend on antiapoptotic Bcl-2 proteins, such as Bcl-2, Bcl-xL, Bcl-w and Mcl-1. For their targeting, several antagonists have been generated, which mimic the Bcl-2 homology domain 3 (BH3 mimetics). As dysregulation and overexpression of Mcl-1 has been reported in CTCL, the use of Mcl-1 inhibitors appears as an attractive strategy. Here, we investigated the effects of the selective Mcl-1 inhibitor S63845 in a series of four CTCL cell lines, in comparison to ABT-263 and ABT-737 (inhibitors of Bcl-2, Bcl-xL and Bcl-w). In two cell lines (HH, HuT-78), S63845 resulted in significant apoptosis induction, decrease in cell viability, loss of mitochondrial membrane potential and caspase activation, while two other cell lines (MyLa, SeAx) remained completely resistant. An inverse correlation was found, as S63845-resistant cells were highly sensitive to ABT-263/-737, and S63845-sensitive cells showed only moderate sensitivity to ABTs. Combinations of S63845 and ABT-263 partially yielded synergistic effects. As concerning Bcl-2 protein expression, weaker Mcl-1 expression was found in S63845-resistant MyLa and SeAx, while for Bcl-2 and Bcl-xL, the lowest expression was found in the highly sensitive cell line HH. The most striking difference between S63845-resistant and -sensitive cells was identified for Bcl-w, which was exclusively expressed in S63845-resistant cells. Thus, CTCL may be efficiently targeted by BH3 mimetics, providing the right target is preselected, and Bcl-w expression may serve as a suitable marker.