Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Trials ; 25(1): 308, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715118

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a frequent cause of hypoxemic respiratory failure with a mortality rate of approximately 30%. Identifying ARDS subphenotypes based on "focal" or "non-focal" lung morphology has the potential to better target mechanical ventilation strategies of individual patients. However, classifying morphology through chest radiography or computed tomography is either inaccurate or impractical. Lung ultrasound (LUS) is a non-invasive bedside tool that can accurately distinguish "focal" from "non-focal" lung morphology. We hypothesize that LUS-guided personalized mechanical ventilation in ARDS patients leads to a reduction in 90-day mortality compared to conventional mechanical ventilation. METHODS: The Personalized Mechanical Ventilation Guided by UltraSound in Patients with Acute Respiratory Distress Syndrome (PEGASUS) study is an investigator-initiated, international, randomized clinical trial (RCT) that plans to enroll 538 invasively ventilated adult intensive care unit (ICU) patients with moderate to severe ARDS. Eligible patients will receive a LUS exam to classify lung morphology as "focal" or "non-focal". Thereafter, patients will be randomized within 12 h after ARDS diagnosis to receive standard care or personalized ventilation where the ventilation strategy is adjusted to the morphology subphenotype, i.e., higher positive end-expiratory pressure (PEEP) and recruitment maneuvers for "non-focal" ARDS and lower PEEP and prone positioning for "focal" ARDS. The primary endpoint is all-cause mortality at day 90. Secondary outcomes are mortality at day 28, ventilator-free days at day 28, ICU length of stay, ICU mortality, hospital length of stay, hospital mortality, and number of complications (ventilator-associated pneumonia, pneumothorax, and need for rescue therapy). After a pilot phase of 80 patients, the correct interpretation of LUS images and correct application of the intervention within the safe limits of mechanical ventilation will be evaluated. DISCUSSION: PEGASUS is the first RCT that compares LUS-guided personalized mechanical ventilation with conventional ventilation in invasively ventilated patients with moderate and severe ARDS. If this study demonstrates that personalized ventilation guided by LUS can improve the outcomes of ARDS patients, it has the potential to shift the existing one-size-fits-all ventilation strategy towards a more individualized approach. TRIAL REGISTRATION: The PEGASUS trial was registered before the inclusion of the first patient, https://clinicaltrials.gov/ (ID: NCT05492344).


Asunto(s)
Pulmón , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Síndrome de Dificultad Respiratoria , Ultrasonografía Intervencional , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/mortalidad , Respiración Artificial/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Resultado del Tratamiento , Ultrasonografía Intervencional/métodos , Factores de Tiempo , Estudios Multicéntricos como Asunto , Valor Predictivo de las Pruebas , Medicina de Precisión/métodos
2.
Respir Care ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38296330

RESUMEN

BACKGROUND: Endotracheal suctioning causes discomfort, is associated with adverse effects, and is resource-demanding. An artificial secretion removal method, known as an automated cough, has been developed, which applies rapid, automated deflation, and inflation of the endotracheal tube cuff during the inspiratory phase of mechanical ventilation. This method has been evaluated in the hands of researchers but not when used by attending nurses. The aim of this study was to explore the efficacy of the method over the course of patient management as part of routine care. METHODS: This prospective, longitudinal, interventional study recruited 28 subjects who were intubated and mechanically ventilated. For a maximum of 7 d and on clinical need for endotracheal suctioning, the automatic cough procedure was applied. The subjects were placed in a pressure-regulated ventilation mode with elevated inspiratory pressure, and automated cuff deflation and inflation were performed 3 times, with this repeated if deemed necessary. Success was determined by resolution of the clinical need for suctioning as determined by the attending nurse. Adverse effects were recorded. RESULTS: A total of 84 procedures were performed. In 54% of the subjects, the artificial cough procedure was successful on > 70% of occasions, with 56% of all procedures considered successful. Ninety percent of all the procedures were performed in subjects who were spontaneously breathing and on pressure-support ventilation with peak inspiratory pressures of 20 cm H2O. Rates of adverse events were similar to those seen in the application of endotracheal suctioning. CONCLUSIONS: This study solely evaluated the efficacy of an automated artificial cough procedure, which illustrated the potential for reducing the need for endotracheal suctioning when applied by attending nurses in routine care.

3.
Trials ; 23(1): 348, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461264

RESUMEN

BACKGROUND: INTELLiVENT-Adaptive Support Ventilation (ASV) is a fully automated closed-loop mode of ventilation for use in critically ill patients. Evidence for benefit of INTELLiVENT-ASV in comparison to ventilation that is not fully automated with regard to duration of ventilation and quality of breathing is largely lacking. We test the hypothesis that INTELLiVENT-ASV shortens time spent on a ventilator and improves the quality of breathing. METHODS: The "Effects of Automated Closed-loop VenTilation versus Conventional Ventilation on Duration and Quality of Ventilation" (ACTiVE) study is an international, multicenter, two-group randomized clinical superiority trial. In total, 1200 intensive care unit (ICU) patients with an anticipated duration of ventilation of > 24 h will be randomly assigned to one of the two ventilation strategies. Investigators screen patients aged 18 years or older at start of invasive ventilation in the ICU. Patients either receive automated ventilation by means of INTELLiVENT-ASV, or ventilation that is not automated by means of a conventional ventilation mode. The primary endpoint is the number of days free from ventilation and alive at day 28; secondary endpoints are quality of breathing using granular breath-by-breath analysis of ventilation parameters and variables in a time frame of 24 h early after the start of invasive ventilation, duration of ventilation in survivors, ICU and hospital length of stay (LOS), and mortality rates in the ICU and hospital, and at 28 and 90 days. DISCUSSION: ACTiVE is one of the first randomized clinical trials that is adequately powered to compare the effects of automated closed-loop ventilation versus conventional ventilation on duration of ventilation and quality of breathing in invasively ventilated critically ill patients. The results of ACTiVE will support intensivist in their choices regarding the use of automated ventilation. TRIAL REGISTRATION: ACTiVE is registered in clinicaltrials.gov (study identifier: NCT04593810 ) on 20 October 2020.


Asunto(s)
Enfermedad Crítica , Respiración Artificial , Humanos , Unidades de Cuidados Intensivos , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración , Respiración Artificial/métodos , Ventiladores Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA