RESUMEN
PURPOSE: Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R2∗ and R2. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R2∗ and R2. METHODS: Spin- and gradient-echo (SAGE) data were simulated across T2∗ and T2 values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R2∗ and R2, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach. RESULTS: Across all fitting methods, T2∗ was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T2∗ values (5-15 ms), T2 was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R2∗ and R2 estimates were similar to NLSQ, and there were no differences in R2∗ across fitting methods at high SNR. However, there were some differences at low SNR and for R2 at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R2∗- (0.97 ratio) and R2-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h). CONCLUSIONS: LLSQ reliably fit for R2∗ and R2 in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R2∗ and R2.
Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Análisis de los Mínimos Cuadrados , Relación Señal-Ruido , Simulación por Computador , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Reproducibilidad de los Resultados , Circulación Cerebrovascular/fisiología , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.
Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Programas Informáticos , AlgoritmosRESUMEN
Background: Magnetic resonance imaging (MRI) is used extensively to quantify myelin content, however computational bottlenecks remain challenging for advanced imaging techniques in clinical settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation, including the myelin-sensitive macromolecular pool size ratio (PSR). Significant progress has been made in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation from the resulting data remains computationally expensive. To overcome this computational limitation, we developed a computationally efficient, open-source toolkit implemented in the Julia language. Methods: To test the accuracy of this toolkit, we simulated SIR images with varying PSR and spin-lattice relaxation time of the free water pool (R 1f) over a physiologically meaningful scale from 5% to 20% and 0.5 to 1.5 s-1, respectively. Rician noise was then added, and the parameter maps were estimated using our Julia toolkit. Probability density histogram plots and Lin's concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the fits to our known simulation data. To further mimic biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25% to 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate PSR and R 1f. Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to demonstrate the reduced computational time for a real-world clinical example. Results: Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC > 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases, SIR parameter estimates were consistent with published values using MATLAB. However, compared to earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational time. Conclusions: Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical settings.
Asunto(s)
Imagen por Resonancia Magnética , Vaina de Mielina , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen , Simulación por ComputadorRESUMEN
BACKGROUND: Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets. OBJECTIVE: The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI). METHODS: Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females). VBM and FW-DTI metrics (fractional anisotropy (FA), axial and radial diffusivities (AxD and RD, respectively), and FW index) were compared using effect size for the main effects of group, sex, and their interaction. RESULTS: Significant group and sex differences were observed, with no significant interaction. Post-hoc comparisons showed that AD is associated with reduced GM volume, reduced FW-FA, and higher FW-RD/FW-index, consistent with neurodegeneration. Females in both groups exhibited higher GM volume than males, while FW-DTI metrics showed sex differences only in the AD group. Lower FW, lower FW-FA and higher FW-RD were observed in females relative to males in the AD group. CONCLUSION: The combination of VBM and DTI may reveal complementary sex-specific changes in GM and WM associated with AD and aging. Sex differences in GM volume were observed for both groups, while FW-DTI metrics only showed significant sex differences in the AD group, suggesting that WM tract disorganization may play a differential role in AD pathophysiology between females and males.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Imagen de Difusión Tensora/métodos , Caracteres Sexuales , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Biomarcadores/análisis , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Multiple sclerosis is characterized by the formation of central nervous system demyelinating lesions with microvasculature inflammation. OBJECTIVE: Evaluate how lesion cerebral perfusion relates to white matter microstructural integrity in patients with RRMS using perfusion MRI and myelin-related T1-weighted to T2-weighted (T1w/T2w) ratios. METHODS: Forty-eight patients with RRMS were imaged with dynamic susceptibility contrast imaging using SAGE (spin- and gradient-echo) to calculate global and capillary-sized perfusion parameters, including cerebral blood flow (CBF), volume (CBV), and mean transit time (MTT). T1w/T2w ratios were used to indirectly assess white matter microstructural integrity. RESULTS: For global perfusion metrics, CBF was reduced 28.4% in lesion regions of interest (ROIs) compared to normal appearing white matter (NAWM), CBV was reduced 25.9% in lesion ROIs compared to NAWM, and MTT increased 12.9%. For capillary perfusion metrics (via spin-echo (SE)), CBF-SE was reduced 35.7% in lesion ROIs compared to NAWM, CBV-SE was reduced 35.2% in lesion ROIs compared to NAWM, and MTT-SE increased 9.1%. Capillary-level CBF was correlated (ρ = 0.34, p = 0.024) with white matter microstructural integrity in lesion ROIs. CONCLUSION: This study demonstrates that lesion perfusion is reduced at both the global and capillary level and capillary-associated hypoperfusion is associated with reduced white matter microstructural integrity in RRMS.
RESUMEN
Cryo-electron microscopy (EM) requires molecular modeling to refine structural details from data. Ensemble models arrive at low free-energy molecular structures, but are computationally expensive and limited to resolving only small proteins that cannot be resolved by cryo-EM. Here, we introduce CryoFold - a pipeline of molecular dynamics simulations that determines ensembles of protein structures directly from sequence by integrating density data of varying sparsity at 3-5 Å resolution with coarse-grained topological knowledge of the protein folds. We present six examples showing its broad applicability for folding proteins between 72 to 2000 residues, including large membrane and multi-domain systems, and results from two EMDB competitions. Driven by data from a single state, CryoFold discovers ensembles of common low-energy models together with rare low-probability structures that capture the equilibrium distribution of proteins constrained by the density maps. Many of these conformations, unseen by traditional methods, are experimentally validated and functionally relevant. We arrive at a set of best practices for data-guided protein folding that are controlled using a Python GUI.
RESUMEN
Sensing and responding to temperature is crucial in biology. The TRPV1 ion channel is a well-studied heat-sensing receptor that is also activated by vanilloid compounds, including capsaicin. Despite significant interest, the molecular underpinnings of thermosensing have remained elusive. The TRPV1 S1-S4 membrane domain couples chemical ligand binding to the pore domain during channel gating. Here we show that the S1-S4 domain also significantly contributes to thermosensing and couples to heat-activated gating. Evaluation of the isolated human TRPV1 S1-S4 domain by solution NMR, far-UV CD, and intrinsic fluorescence shows that this domain undergoes a non-denaturing temperature-dependent transition with a high thermosensitivity. Further NMR characterization of the temperature-dependent conformational changes suggests the contribution of the S1-S4 domain to thermosensing shares features with known coupling mechanisms between this domain with ligand and pH activation. Taken together, this study shows that the TRPV1 S1-S4 domain contributes to TRPV1 temperature-dependent activation.
Asunto(s)
Calor , Activación del Canal Iónico/fisiología , Canales Catiónicos TRPV/metabolismo , Sensación Térmica/fisiología , Sitios de Unión/genética , Capsaicina/química , Capsaicina/metabolismo , Dicroismo Circular , Humanos , Activación del Canal Iónico/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Sensación Térmica/genéticaRESUMEN
Transient receptor potential (TRP) ion channels are polymodal receptors that have been implicated in a variety of pathophysiologies, including pain, obesity, and cancer. The capsaicin and heat sensor TRPV1, and the menthol and cold sensor TRPM8, have been shown to be modulated by the membrane protein PIRT (Phosphoinositide-interacting regulator of TRP). The emerging mechanism of PIRT-dependent TRPM8 regulation involves a competitive interaction between PIRT and TRPM8 for the activating phosphatidylinositol 4,5-bisphosphate (PIP2) lipid. As many PIP2 modulated ion channels also interact with calmodulin, we investigated the possible interaction between PIRT and calmodulin. Using microscale thermophoresis (MST), we show that calmodulin binds to the PIRT C-terminal α-helix, which we corroborate with a pull-down experiment, nuclear magnetic resonance-detected binding study, and Rosetta-based computational studies. Furthermore, we identify a cholesterol-recognition amino acid consensus (CRAC) domain in the outer leaflet of the first transmembrane helix of PIRT, and with MST, show that PIRT specifically binds to a number of cholesterol-derivatives. Additional studies identified that PIRT binds to cholecalciferol and oxytocin, which has mechanistic implications for the role of PIRT regulation of additional ion channels. This is the first study to show that PIRT specifically binds to a variety of ligands beyond TRP channels and PIP2.
Asunto(s)
Calmodulina/química , Colesterol/química , Proteínas de la Membrana/química , Canales Catiónicos TRPM/química , Canales Catiónicos TRPV/química , Calmodulina/metabolismo , Colesterol/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Unión Proteica , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismoRESUMEN
TRPM8 is a member of the transient receptor potential ion channel family where it functions as a cold and pain sensor in humans and other higher organisms. Previous studies show that TRPM8 requires the signaling phosphoinositide lipid PIP2 to function. TRPM8 function is further regulated by other diverse mechanisms, including the small modulatory membrane protein PIRT (phosphoinositide regulator of TRP). Like TRPM8, PIRT also binds PIP2 and behavioral studies have shown that PIRT is required for normal TRPM8-mediated cold-sensing. To better understand the molecular mechanism of PIRT regulation of TRPM8, solution nuclear magnetic resonance (NMR) spectroscopy was used to assign the backbone resonances of full-length human PIRT and investigate the direct binding of PIRT to PIP2 and the human TRPM8 S1-S4 transmembrane domain. Microscale thermophoresis (MST) binding studies validate the NMR results and identify a competitive PIRT interaction between PIP2 and the TRPM8 S1-S4 domain. Computational PIP2 docking to a human TRPM8 comparative model was performed to help localize where PIRT may bind TRPM8. Taken together, our data suggest a mechanism where TRPM8, PIRT, and PIP2 form a regulatory complex and PIRT modulation of TRPM8 arises, at least in part, by regulating local concentrations of PIP2 accessible to TRPM8.
Asunto(s)
Proteínas de la Membrana/metabolismo , Canales Catiónicos TRPM/metabolismo , Frío , Humanos , Dominios Proteicos/fisiología , Mapas de Interacción de Proteínas/fisiologíaRESUMEN
Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Proteínas Portadoras/química , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Especificidad de la Especie , Canales Catiónicos TRPM/químicaRESUMEN
The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."
Asunto(s)
Fibrosis Quística/metabolismo , Canal de Potasio KCNQ1/química , Complejos Multiproteicos/química , Canales de Potasio con Entrada de Voltaje/química , Animales , Canales de Cloruro/química , Biología Computacional/métodos , Fibrosis Quística/patología , Fenómenos Electrofisiológicos , Células Epiteliales/química , Células Epiteliales/metabolismo , Humanos , Canal de Potasio KCNQ1/metabolismo , Complejos Multiproteicos/metabolismo , Potasio/química , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Dominios ProteicosRESUMEN
Threose nucleic acid (TNA) is an artificial genetic polymer capable of heredity and evolution, and is studied in the context of RNA chemical etiology. It has a four-carbon threose backbone in place of the five-carbon ribose of natural nucleic acids, yet forms stable antiparallel complementary Watson-Crick homoduplexes and heteroduplexes with DNA and RNA. TNA base-pairs more favorably with RNA than with DNA but the reason is unknown. Here, we employed NMR, ITC, UV, and CD to probe the structural and dynamic properties of heteroduplexes of RNA/TNA and DNA/TNA. The results indicate that TNA templates the structure of heteroduplexes, thereby forcing an A-like helical geometry. NMR measurement of kinetic and thermodynamic parameters for individual base pair opening events reveal unexpected asymmetric "breathing" fluctuations of the DNA/TNA helix. The results suggest that DNA is unable to fully adapt to the conformational constraints of the rigid TNA backbone and that nucleic acid breathing dynamics are determined from both backbone and base contributions.
Asunto(s)
Emparejamiento Base , ADN/química , ARN/química , Tetrosas/químicaRESUMEN
The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary cold sensor in humans. TRPM8 is gated by physiologically relevant cold temperatures and chemical ligands that induce cold sensations, such as the analgesic compound menthol. Characterization of TRPM8 ligand-gated channel activation will lead to a better understanding of the fundamental mechanisms that underlie TRPM8 function. Here, the direct binding of menthol to the isolated hTRPM8 sensing domain (transmembrane helices S1-S4) is investigated. These data are compared with two mutant sensing domain proteins, Y745H (S2 helix) and R842H (S4 helix), which have been previously identified in full length TRPM8 to be menthol insensitive. The data presented herein show that menthol specifically binds to the wild type, Y745H, and R842H TRPM8 sensing domain proteins. These results are the first to show that menthol directly binds to the TRPM8 sensing domain and indicates that Y745 and R842 residues, previously identified in functional studies as crucial to menthol sensitivity, do not affect menthol binding but instead alter coupling between the sensing domain and the pore domain.
Asunto(s)
Mentol/metabolismo , Canales Catiónicos TRPM/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genéticaRESUMEN
NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein-ligand interaction at their binding interfaces. While simple one-dimensional (1)H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein (1)H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Protones por Resonancia Magnética , Estadística como Asunto , Algoritmos , Animales , Bovinos , Ensayos Analíticos de Alto Rendimiento , Ligandos , Albúmina Sérica Bovina/química , Procesamiento de Señales Asistido por ComputadorRESUMEN
Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines.