Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cyst Fibros ; 23(4): 664-675, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38388235

RESUMEN

BACKGROUND: In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS: Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS: 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.


Asunto(s)
Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Indoles , Pirazoles , Quinolonas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Quinolonas/uso terapéutico , Quinolonas/farmacología , Aminofenoles/uso terapéutico , Aminofenoles/farmacología , Animales , Ratas , Humanos , Benzodioxoles/uso terapéutico , Benzodioxoles/farmacología , Indoles/uso terapéutico , Indoles/farmacología , Pirazoles/farmacología , Pirazoles/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Combinación de Medicamentos , Agonistas de los Canales de Cloruro/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico
2.
Sci Rep ; 12(1): 2509, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169219

RESUMEN

Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Dominios Proteicos/genética , Ribosomas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Nucleótidos/metabolismo , Proyectos Piloto , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Transfección
3.
Nat Commun ; 11(1): 4258, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848127

RESUMEN

Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mutación , Sustitución de Aminoácidos , Sitios de Unión/genética , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Células HEK293 , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios Proteicos , Pliegue de Proteína , Modificación Traduccional de las Proteínas/genética , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Supresión Genética , Temperatura
4.
J Cyst Fibros ; 19 Suppl 1: S25-S32, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31902693

RESUMEN

The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Moduladores del Transporte de Membrana/farmacología , Terapia Molecular Dirigida , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Medicina Molecular/métodos , Medicina Molecular/tendencias , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Mutación , Pruebas de Farmacogenómica
5.
Nat Commun ; 10(1): 822, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778053

RESUMEN

Premature termination codons (PTCs) are responsible for 10-15% of all inherited disease. PTC suppression during translation offers a promising approach to treat a variety of genetic disorders, yet small molecules that promote PTC read-through have yielded mixed performance in clinical trials. Here we present a high-throughput, cell-based assay to identify anticodon engineered transfer RNAs (ACE-tRNA) which can effectively suppress in-frame PTCs and faithfully encode their cognate amino acid. In total, we identify ACE-tRNA with a high degree of suppression activity targeting the most common human disease-causing nonsense codons. Genome-wide transcriptome ribosome profiling of cells expressing ACE-tRNA at levels which repair PTC indicate that there are limited interactions with translation termination codons. These ACE-tRNAs display high suppression potency in mammalian cells, Xenopus oocytes and mice in vivo, producing PTC repair in multiple genes, including disease causing mutations within cystic fibrosis transmembrane conductance regulator (CFTR).


Asunto(s)
Codón sin Sentido/genética , Ingeniería Genética/métodos , ARN de Transferencia/genética , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Biblioteca de Genes , Células HEK293 , Humanos , Ratones Endogámicos , Oocitos/citología , Oocitos/fisiología , Ribosomas/genética , Xenopus laevis
6.
Mol Biol Cell ; 27(3): 424-33, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26823392

RESUMEN

More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Animales , Agonistas de los Canales de Cloruro/farmacología , Agonistas de los Canales de Cloruro/uso terapéutico , Fibrosis Quística/clasificación , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Predisposición Genética a la Enfermedad , Humanos , Activación del Canal Iónico , Mutación Missense
7.
J Biol Chem ; 290(48): 28944-52, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26254469

RESUMEN

Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments. Results showed that following ribosome docking on the ER membrane, the nascent polypeptide was shielded from the cytosol as it emerged from the ribosome exit tunnel. Extracellular loops followed a well defined path through the ribosome, the ribosome translocon junction, the Sec61-translocon pore, and into the ER lumen coincident with chain elongation. In contrast, intracellular loops (ICLs) and C-terminalresidues exited the ribosome into a cytosolically shielded environment and remained inaccessible to both cytosolic and lumenal compartments until translation was terminated. Shielding of ICL1 and ICL2, but not the C terminus, became resistant to maneuvers that disrupt electrostatic ribosome interactions. Thus, the early folding landscape of polytopic proteins is shaped by a spatially restricted environment localized within the assembled ribosome translocon complex.


Asunto(s)
Acuaporina 4/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Ribosomas/metabolismo , Acuaporina 4/química , Acuaporina 4/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Humanos , Membranas Intracelulares/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Estructura Secundaria de Proteína , Ribosomas/química , Ribosomas/genética , Canales de Translocación SEC
8.
Science ; 348(6233): 444-8, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25908822

RESUMEN

In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, α-helical, and α/ß-core subdomains. Moreover, the timing of these events was critical; premature α-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying α-subdomain compaction, facilitating ß-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis.


Asunto(s)
Codón/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Extensión de la Cadena Peptídica de Translación , Pliegue de Proteína , Secuencia de Aminoácidos , Codón/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ribosomas/química , Ribosomas/metabolismo
9.
Mol Cell ; 58(2): 269-83, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25801167

RESUMEN

The ER Sec61 translocon is a large macromolecular machine responsible for partitioning secretory and membrane polypeptides into the lumen, cytosol, and lipid bilayer. Because the Sec61 protein-conducting channel has been isolated in multiple membrane-derived complexes, we determined how the nascent polypeptide modulates translocon component associations during defined cotranslational translocation events. The model substrate preprolactin (pPL) was isolated principally with Sec61αßγ upon membrane targeting, whereas higher-order complexes containing OST, TRAP, and TRAM were stabilized following substrate translocation. Blocking pPL translocation by passenger domain folding favored stabilization of an alternate complex that contained Sec61, Sec62, and Sec63. Moreover, Sec62/63 stabilization within the translocon occurred for native endogenous substrates, such as the prion protein, and correlated with a delay in translocation initiation. These data show that cotranslational translocon contacts are ultimately controlled by the engaged nascent chain and the resultant substrate-driven translocation events.


Asunto(s)
Retículo Endoplásmico/enzimología , Mamíferos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Retículo Endoplásmico/química , Estabilidad de Enzimas , Priones/metabolismo , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
10.
Nat Struct Mol Biol ; 21(3): 228-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24561504

RESUMEN

Eukaryotic secretory proteins cross the endoplasmic reticulum (ER) membrane through a protein-conducting channel contained within the ribosome-Sec61translocon complex (RTC). Using a zinc-finger sequence as a folding switch, we show that cotranslational folding of a secretory passenger inhibits translocation in canine ER microsomes and in human cells. Folding occurs within a cytosolically inaccessible environment, after ER targeting but before initiation of translocation, and it is most effective when the folded domain is 15-54 residues beyond the signal sequence. Under these conditions, substrate is diverted into cytosol at the stage of synthesis in which unfolded substrate enters the ER lumen. Moreover, the translocation block is reversed by passenger unfolding even after cytosol emergence. These studies identify an enclosed compartment within the assembled RTC that allows a short span of nascent chain to reversibly abort translocation in a substrate-specific manner.


Asunto(s)
Proteínas de Transporte de Membrana/química , Biosíntesis de Proteínas , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animales , Línea Celular , Citosol/metabolismo , Perros , Endopeptidasa K/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas de Transporte de Membrana/metabolismo , Microsomas/metabolismo , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinc/química , Dedos de Zinc
11.
J Biol Chem ; 288(43): 31069-79, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23990462

RESUMEN

The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Proteínas del Choque Térmico HSC70/química , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/química , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Secuencias de Aminoácidos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Mutación , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Front Pharmacol ; 3: 201, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23248597

RESUMEN

In the past decade much has been learned about how Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) folds and misfolds as the etiologic cause of cystic fibrosis (CF). CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries. Insertion of transmembrane (TM) segments into the endoplasmic reticulum (ER) membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure. Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding. While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jig-saw puzzle wherein the structure of each interlocking piece influences its neighbors. Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane. While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s) caused by ΔF508 that provides a molecular target(s) for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.

13.
Nat Struct Mol Biol ; 19(10): 975-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23037593

RESUMEN

SecY and Sec61 translocons mediate the orderly insertion of transmembrane segments into the lipid bilayer during membrane-protein biogenesis. Reporting in this issue, Ismail et al. now use a SecM-based molecular force sensor to show that the translocon exerts a pulling force on the nascent chain that is capable of mechanical action at two distinct stages of the insertion process.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/metabolismo , Animales
14.
Biochemistry ; 51(25): 5113-24, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22680785

RESUMEN

Deletion of Phe508 from cystic fibrosis transmembrane conductance regulator (CFTR) results in a temperature-sensitive folding defect that impairs protein maturation and chloride channel function. Both of these adverse effects, however, can be mitigated to varying extents by second-site suppressor mutations. To better understand the impact of second-site mutations on channel function, we compared the thermal sensitivity of CFTR channels in Xenopus oocytes. CFTR-mediated conductance of oocytes expressing wt or ΔF508 CFTR was stable at 22 °C and increased at 28 °C, a temperature permissive for ΔF508 CFTR expression in mammalian cells. At 37 °C, however, CFTR-mediated conductance was further enhanced, whereas that due to ΔF508 CFTR channels decreased rapidly toward background, a phenomenon referred to here as "thermal inactivation." Thermal inactivation of ΔF508 was mitigated by each of five suppressor mutations, I539T, R553M, G550E, R555K, and R1070W, but each exerted unique effects on the severity of, and recovery from, thermal inactivation. Another mutation, K1250A, known to increase open probability (P(o)) of ΔF508 CFTR channels, exacerbated thermal inactivation. Application of potentiators known to increase P(o) of ΔF508 CFTR channels at room temperature failed to protect channels from inactivation at 37 °C and one, PG-01, actually exacerbated thermal inactivation. Unstimulated ΔF508CFTR channels or those inhibited by CFTR(inh)-172 were partially protected from thermal inactivation, suggesting a possible inverse relationship between thermal stability and gating transitions. Thermal stability of channel function and temperature-sensitive maturation of the mutant protein appear to reflect related, but distinct facets of the ΔF508 CFTR conformational defect, both of which must be addressed by effective therapeutic modalities.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genes Supresores , Calor/efectos adversos , Fenilalanina/genética , Mutación Puntual , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Humanos , Oocitos/química , Oocitos/metabolismo , Estabilidad Proteica , Xenopus laevis
15.
J Biol Chem ; 287(4): 2568-78, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22128180

RESUMEN

Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed ß-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10-15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 ß-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th ß-strand into the mature barrel structure.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/química , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Cinética , Ribosomas/metabolismo
16.
J Biol Chem ; 286(48): 41402-41412, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21984826

RESUMEN

Virus-infected cells are eliminated by cytotoxic T lymphocytes, which recognize viral epitopes displayed on major histocompatibility complex class I molecules at the cell surface. Herpesviruses have evolved sophisticated strategies to escape this immune surveillance. During the lytic phase of EBV infection, the viral factor BNLF2a interferes with antigen processing by preventing peptide loading of major histocompatibility complex class I molecules. Here we reveal details of the inhibition mechanism of this EBV protein. We demonstrate that BNLF2a acts as a tail-anchored protein, exploiting the mammalian Asna-1/WRB (Get3/Get1) machinery for posttranslational insertion into the endoplasmic reticulum membrane, where it subsequently blocks antigen translocation by the transporter associated with antigen processing (TAP). BNLF2a binds directly to the core TAP complex arresting the ATP-binding cassette transporter in a transport-incompetent conformation. The inhibition mechanism of EBV BNLF2a is distinct and mutually exclusive of other viral TAP inhibitors.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de la Matriz Viral/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Presentación de Antígeno/genética , ATPasas Transportadoras de Arsenitos/genética , ATPasas Transportadoras de Arsenitos/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Infecciones por Virus de Epstein-Barr/genética , Células HeLa , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Spodoptera , Proteínas de la Matriz Viral/genética
17.
Cell ; 146(1): 134-47, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729785

RESUMEN

In eukaryotic cells, the ribosome-Sec61 translocon complex (RTC) establishes membrane protein topology by cotranslationally partitioning nascent polypeptides into the cytosol, ER lumen, and lipid bilayer. Using photocrosslinking, collisional quenching, cysteine accessibility, and protease protection, we show that a canonical type II signal anchor (SA) acquires its topology through four tightly coupled and mechanistically distinct steps: (1) head-first insertion into Sec61α, (2) nascent chain accumulation within the RTC, (3) inversion from type I to type II topology, and (4) stable translocation of C-terminal flanking residues. Progression through each stage is induced by incremental increases in chain length and involves abrupt changes in the molecular environment of the SA. Importantly, type II SA inversion deviates from a type I SA at an unstable intermediate whose topology is controlled by dynamic interactions between the ribosome and translocon. Thus, the RTC coordinates SA topogenesis within a protected environment via sequential energetic transitions of the TM segment.


Asunto(s)
Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Animales , Sistema Libre de Células , Perros , Retículo Endoplásmico/metabolismo , Microsomas/metabolismo , Señales de Clasificación de Proteína , Conejos , Canales de Translocación SEC
18.
J Virol ; 85(17): 8766-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21715474

RESUMEN

Cytomegalovirus (CMV) efficiently evades many host immune defenses and encodes a number of proteins that prevent antigen presentation by major histocompatibility complex class I (MHC-I) molecules in order to evade recognition and killing of infected cells by cytotoxic CD8(+) T cells. We recently showed that rhesus CMV-specific Rh178 intercepts MHC-I protein translation before interference of MHC-I maturation by homologues of the human CMV US6 family. Here, we demonstrate that Rh178 localizes to the membrane of the endoplasmic reticulum, displaying a short luminal and large cytosolic domain, and that the membrane-proximal cytosolic portion is essential for inhibition of MHC-I expression. We further observed that Rh178 does not require synthesis of full-length MHC-I heavy chains but is capable of inhibiting the translation of short, unstable amino-terminal fragments of MHC-I. Moreover, the transfer of amino-terminal fragments containing the MHC-I signal peptide renders recipient proteins susceptible to targeting by Rh178. The cytosolic orientation of Rh178 and its ability to target protein fragments carrying the MHC-I signal peptide are consistent with Rh178 intercepting partially translated MHC-I heavy chains after signal recognition particle-dependent transfer to the endoplasmic reticulum membrane. However, interference with MHC-I translation by Rh178 seems to occur prior to SEC61-dependent protein translocation, since inhibition of MHC-I translocation by eeyarestatin 1 resulted in a full-length degradation intermediate that can be stabilized by proteasome inhibitors. These data are consistent with Rh178 blocking protein translation of MHC-I heavy chains at a step prior to the start of translocation, thereby downregulating MHC-I at a very early stage of translation.


Asunto(s)
Citomegalovirus/patogenicidad , Antígenos de Histocompatibilidad Clase I/biosíntesis , Interacciones Huésped-Patógeno , Biosíntesis de Proteínas , Señales de Clasificación de Proteína , Proteínas Virales/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/química , Humanos , Macaca mulatta
19.
Mol Biol Cell ; 22(16): 2797-809, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21697503

RESUMEN

The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Retículo Endoplásmico/química , Proteínas del Choque Térmico HSC70/química , Pliegue de Proteína , Proteolisis , Animales , Línea Celular , Sistema Libre de Células , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Proteínas de Unión al ADN/química , Humanos , Microsomas/química , Fragmentos de Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Factores de Transcripción/química , Ubiquitinación
20.
Curr Opin Cell Biol ; 23(4): 464-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21664808

RESUMEN

The evolution of eukaryotes was accompanied by an increased need for intracellular communication and cellular specialization. Thus, a more complex collection of secreted and membrane proteins had to be synthesized, modified, and folded. The endoplasmic reticulum (ER) thereby became equipped with devoted enzymes and associated factors that both catalyze the production of secreted proteins and remove damaged proteins. A means to modify ER function to accommodate and destroy misfolded proteins also evolved. Not surprisingly, a growing number of human diseases are linked to various facets of ER function. Each of these topics will be discussed in this article, with an emphasis on recent reports in the literature that employed diverse models.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Levaduras/metabolismo , Animales , Retículo Endoplásmico/enzimología , Humanos , Proteínas de la Membrana/metabolismo , Levaduras/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA