RESUMEN
Rheological measurements with in situ visualization can elucidate the microstructural origin of complex flow behaviors of an ink. However, existing commercial rheometers suffer from high costs, the need for dedicated facilities for microfabrication, a lack of design flexibility, and cabling that complicates operation in sterile or enclosed environments. To address these limitations, a low-cost ($300) visual, in-expensive and wireless rheometer (VIEWR) using 3D-printed and off-the-shelf components is presented. VIEWR measurements are validated by steady-state and transient flow responses for different complex fluids, and microstructural flow profiles and evolution of yield-planes are revealed via particle image velocimetry. Using the VIEWR, a wholly-cellular bioink system comprised of compacted cell aggregates is characterized, and complex yield-stress and viscoelastic responses are captured via concomitantly visualizing the spatiotemporal evolution of aggregate morphology. A symmetric hyperbolic extensional-flow geometry is further constructed inside a capillary tube using digital light processing. Such geometries allow for measuring the extensional viscosity at varying deformation rates and further visualizing the alignment and stretching of aggregates under external flow. Synchronized but asymmetric evolution of aggregate orientation and strain through the neck is visualized. Using varying geometries, the jamming and viscoelastic deformation of aggregates are shown to contribute to the extensional viscosity of the wholly-cellular bioinks.
RESUMEN
Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Técnicas de Cultivo de Célula , Proliferación Celular , Línea Celular , Reactores BiológicosRESUMEN
The construction of human organs on demand remains a tantalizing vision to solve the organ donor shortage. Yet, engineering tissues that recapitulate the cellular and architectural complexity of native organs is a grand challenge. The use of organ building blocks (OBBs) composed of multicellular spheroids, organoids, and assembloids offers an important pathway for creating organ-specific tissues with the desired cellular-to-tissue-level organization. Here, we review the differentiation, maturation, and 3D assembly of OBBs into functional human tissues and, ultimately, organs for therapeutic repair and replacement. We also highlight future challenges and areas of opportunity for this nascent field.
Asunto(s)
Organoides , Ingeniería de Tejidos , Humanos , Esferoides CelularesRESUMEN
The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.
Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Células Endoteliales , Humanos , Factores de Transcripción/metabolismoRESUMEN
Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficientin vitromicrovascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular-and, thus, tissue-function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine andex vivohuman tissue modeling.
Asunto(s)
Bioimpresión , Andamios del Tejido , Bioimpresión/métodos , Microvasos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración , Animales , Materiales Biocompatibles , Biomarcadores , Técnicas de Cultivo de Célula , Desarrollo de Medicamentos , Descubrimiento de Drogas , Regulación del Desarrollo de la Expresión Génica , Humanos , Técnicas de Cultivo de Tejidos , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
There is growing interest in voxelated matter that is designed and fabricated voxel by voxel1-4. Currently, inkjet-based three-dimensional (3D) printing is the only widely adopted method that is capable of creating 3D voxelated materials with high precision1-4, but the physics of droplet formation requires the use of low-viscosity inks to ensure successful printing5. By contrast, direct ink writing, an extrusion-based 3D printing method, is capable of patterning a much broader range of materials6-13. However, it is difficult to generate multimaterial voxelated matter by extruding monolithic cylindrical filaments in a layer-by-layer manner. Here we report the design and fabrication of voxelated soft matter using multimaterial multinozzle 3D (MM3D) printing, in which the composition, function and structure of the materials are programmed at the voxel scale. Our MM3D printheads exploit the diode-like behaviour that arises when multiple viscoelastic materials converge at a junction to enable seamless, high-frequency switching between up to eight different materials to create voxels with a volume approaching that of the nozzle diameter cubed. As exemplars, we fabricate a Miura origami pattern14 and a millipede-like soft robot that locomotes by co-printing multiple epoxy and silicone elastomer inks of stiffness varying by several orders of magnitude. Our method substantially broadens the palette of voxelated materials that can be designed and manufactured in complex motifs.
RESUMEN
Engineering organ-specific tissues for therapeutic applications is a grand challenge, requiring the fabrication and maintenance of densely cellular constructs composed of ~108 cells/ml. Organ building blocks (OBBs) composed of patient-specific-induced pluripotent stem cell-derived organoids offer a pathway to achieving tissues with the requisite cellular density, microarchitecture, and function. However, to date, scant attention has been devoted to their assembly into 3D tissue constructs. Here, we report a biomanufacturing method for assembling hundreds of thousands of these OBBs into living matrices with high cellular density into which perfusable vascular channels are introduced via embedded three-dimensional bioprinting. The OBB matrices exhibit the desired self-healing, viscoplastic behavior required for sacrificial writing into functional tissue (SWIFT). As an exemplar, we created a perfusable cardiac tissue that fuses and beats synchronously over a 7-day period. Our SWIFT biomanufacturing method enables the rapid assembly of perfusable patient- and organ-specific tissues at therapeutic scales.
Asunto(s)
Bioimpresión , Vasos Coronarios/metabolismo , Matriz Extracelular/química , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Ingeniería de Tejidos , Vasos Coronarios/citología , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocardio/citologíaRESUMEN
Lithographic nanofabrication is often limited to successive fabrication of two-dimensional (2D) layers. We present a strategy for the direct assembly of 3D nanomaterials consisting of metals, semiconductors, and biomolecules arranged in virtually any 3D geometry. We used hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We then optically patterned these scaffolds in three dimensions, attached one or more functional materials, and then shrank and dehydrated them in a controlled way to achieve nanoscale feature sizes in a solid substrate. We demonstrate that our process, Implosion Fabrication (ImpFab), can directly write highly conductive, 3D silver nanostructures within an acrylic scaffold via volumetric silver deposition. Using ImpFab, we achieve resolutions in the tens of nanometers and complex, non-self-supporting 3D geometries of interest for optical metamaterials.
RESUMEN
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.
Asunto(s)
Bioimpresión/métodos , Células Epiteliales/citología , Túbulos Renales Proximales/citología , Técnicas de Cultivo de Órganos , Ingeniería de Tejidos , Células Cultivadas , Ciclosporina/metabolismo , Evaluación Preclínica de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Perfusión , Impresión TridimensionalRESUMEN
The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.
RESUMEN
Tissues contain exquisite vascular microstructures, and patterns of chemical cues for directing cell migration, homing, and differentiation for organ development and function. 3D microfabrication by multi-photon photolithography is a flexible, high-resolution tool for generating 3D bioscaffolds. However, the combined fabrication of scaffold microstructure simultaneously with patterning of cues to create both geometrically and chemically defined microenvironments remains to be demonstrated. This study presents a high-speed method for micron-resolution fabrication of scaffold microstructure and patterning of protein cues simultaneously using native scaffold materials. By the simultaneous microfabrication of arbitrary microvasculature geometries, and patterning selected regions of the microvasculature with the homing ligand P-selectin, this study demonstrates adhesion, rolling, and selective homing of cells in defined 3D regions. This novel ability to generate high-resolution geometries replete with patterned cues at high speed enables the construction of biomimetic microenvironments for complex 3D assays of cellular behavior.
Asunto(s)
Andamios del Tejido/química , Materiales Biocompatibles/química , Biomimética/métodos , Células Cultivadas , Células HL-60 , Humanos , Microtecnología/métodos , Selectina-P/metabolismo , Fotones , Ingeniería de Tejidos/métodosRESUMEN
The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.