Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211241

RESUMEN

Chronic intestinal inflammation significantly contributes to the development of colorectal cancer (CRC) and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics FKK6, which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). FKK6 (2 mg/kg) displayed substantial anti-tumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, ß-catenin, Ki-67, cyclin D) in the colon. In addition, we carried out the chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro . In conclusion, anticancer effects of FKK6 in AOM/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC.

2.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778463

RESUMEN

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Asunto(s)
Receptores de Hidrocarburo de Aril , Receptores de Esteroides , Humanos , Receptor X de Pregnano/genética , Células CACO-2 , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/farmacología , Triptaminas/farmacología , Receptores de Esteroides/metabolismo
3.
Biochem Pharmacol ; 213: 115626, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247746

RESUMEN

The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Unión Proteica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
4.
J Med Chem ; 65(9): 6859-6868, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35416668

RESUMEN

Targeting the aryl hydrocarbon receptor (AhR) is an emerging therapeutic strategy for multiple diseases (e.g., inflammatory bowel disease). Thermosporothrix hazakensis microbial metabolite 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is a putative AhR endogenous ligand. To improve the chemical stability, we synthesized a series of ITE chemical mimics. Using a series of in vitro assays, we identified 2-(1H-indole-3-carbonyl)-N-methyl thiazole-4-carboxamide (ITE-CONHCH3) as a highly potent (EC50 = 1.6 nM) AhR agonist with high affinity (Ki = 88 nM). ITE-CONHCH3 triggered AhR nuclear translocation and dimerization of AhR-ARNT, enhanced AhR binding in the CYP1A1 promoter, and induced AhR-regulated genes in an AhR-dependent manner. The metabolic stability of ITE-CONHCH3 in a cell culture was 10 times higher than that of ITE. Finally, we observed protective effects of ITE-CONHCH3 in mice with DSS-induced colitis. Overall, we demonstrate and validate a concept of microbial metabolite mimicry in the therapeutic targeting of AhR.


Asunto(s)
Colitis , Receptores de Hidrocarburo de Aril , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocromo P-450 CYP1A1 , Indoles/farmacología , Indoles/uso terapéutico , Ratones , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Tiazoles/farmacología
5.
Front Plant Sci ; 12: 791303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145533

RESUMEN

Chickpea (Cicer arietinum L.) is one of the main sources of plant proteins in the Indian subcontinent and West Asia, where two different morphotypes, desi and kabuli, are grown. Despite the progress in genome mapping and sequencing, the knowledge of the chickpea genome at the chromosomal level, including the long-range molecular chromosome organization, is limited. Earlier cytogenetic studies in chickpea suffered from a limited number of cytogenetic landmarks and did not permit to identify individual chromosomes in the metaphase spreads or to anchor pseudomolecules to chromosomes in situ. In this study, we developed a system for fast molecular karyotyping for both morphotypes of cultivated chickpea. We demonstrate that even draft genome sequences are adequate to develop oligo-fluorescence in situ hybridization (FISH) barcodes for the identification of chromosomes and comparative analysis among closely related chickpea genotypes. Our results show the potential of oligo-FISH barcoding for the identification of structural changes in chromosomes, which accompanied genome diversification among chickpea cultivars. Moreover, oligo-FISH barcoding in chickpea pointed out some problematic, most probably wrongly assembled regions of the pseudomolecules of both kabuli and desi reference genomes. Thus, oligo-FISH appears as a powerful tool not only for comparative karyotyping but also for the validation of genome assemblies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA