Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256199

RESUMEN

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. A maternal high LA (HLA) diet alters cardiovascular development in adolescent rats and hepatic function in adult rats in a sex-specific manner. We investigated the effects of an HLA diet on adolescent offspring hepatic lipids and hepatic lipid metabolism gene expression, and the ability of the postnatal diet to alter these effects. Female Wistar Kyoto rats were fed low LA (LLA; 1.44% energy from LA) or high LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring, weaned at postnatal day (PN) 25, were fed LLA or HLA and euthanised at PN40 (n = 6-8). Maternal HLA increased circulating uric acid, decreased hepatic cholesterol and increased hepatic Pparg in males, whereas only hepatic Srebf1 and Hmgcr increased in females. Postnatal (post-weaning) HLA decreased liver weight (% body weight) and increased hepatic Hmgcr in males, and decreased hepatic triglycerides in females. Maternal and postnatal HLA had an interaction effect on Lpl, Cpt1a and Pparg in females. These findings suggest that an HLA diet both during and after pregnancy should be avoided to improve offspring disease risk.


Asunto(s)
Ácido Linoleico , Metabolismo de los Lípidos , Femenino , Masculino , Embarazo , Ratas , Animales , PPAR gamma , Dieta , Hígado , Ratas Endogámicas WKY , Ácidos Grasos Omega-6
2.
Lasers Med Sci ; 37(3): 1843-1853, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34806122

RESUMEN

Dental pulp cells are a source of multipotent mesenchymal stem cells with a high proliferation rate and multilineage differentiation potential. This study investigated the photobiomodulated bioenergetic effects of mitochondria in osteoblasts that differentiated from human pulp stem cells. The systematic review followed PRISMA guidelines. The PICO question was formulated. Criteria for inclusion and exclusion were established prior to searches being performed on the PubMed/MEDLINE, Embase, and Scopus. Articles were identified and included if published in English within last 10 years; photobiomodulation or low-level laser therapy were discussed; the delivery parameters for dose and time were included and the studies focused on bioenergetics of osteoblast mitochondria. Studies excluded were non-human dental pulp tissue and in vivo studies. A total number of 110 articles were collated, 106 were excluded leaving a total of 4 articles. These studies demonstrated that in vitro use of photobiomodulation was performed using different laser and LED types; InGaAlP; InGaN; and InGaAsP with average wavelengths of 630 to 940 nm. Primary human osteoblastic STRO-1 and mesenchymal stem cell lineages were studied. Three out of four articles confirmed positive bioenergetic effects of photobiomodulation on mitochondria of osteoblasts derived from human pulp cells. This systematic review demonstrated a lack of adequate reporting of bioenergetics of osteoblast mitochondria after photobiomodulation treatment.


Asunto(s)
Terapia por Luz de Baja Intensidad , Células Madre , Diferenciación Celular , Proliferación Celular , Pulpa Dental , Metabolismo Energético , Humanos , Mitocondrias , Osteoblastos
3.
Br J Nutr ; 127(4): 540-553, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33858529

RESUMEN

Linoleic acid (LA), an essential n-6 fatty acid (FA), is critical for fetal development. We investigated the effects of maternal high LA (HLA) diet on offspring cardiac development and its relationship to circulating FA and cardiovascular function in adolescent offspring, and the ability of the postnatal diet to reverse any adverse effects. Female Wistar Kyoto rats were fed low LA (LLA; 1·44 % energy from LA) or high LA (HLA; 6·21 % energy from LA) diets for 10 weeks before pregnancy and during gestation/lactation. Offspring, weaned at postnatal day 25, were fed LLA or HLA diets and euthanised at postnatal day 40 (n 6-8). Maternal HLA diet decreased circulating total cholesterol and HDL-cholesterol in females and decreased total plasma n-3 FA in males, while maternal and postnatal HLA diets decreased total plasma n-3 FA in females. α-Linolenic acid (ALA) and EPA were decreased by postnatal but not maternal HLA diets in both sexes. Maternal and postnatal HLA diets increased total plasma n-6 and LA, and a maternal HLA diet increased circulating leptin, in both male and female offspring. Maternal HLA decreased slopes of systolic and diastolic pressure-volume relationship (PVR), and increased cardiac Col1a1, Col3a1, Atp2a1 and Notch1 in males. Maternal and postnatal HLA diets left-shifted the diastolic PVR in female offspring. Coronary reactivity was altered in females, with differential effects on flow repayment after occlusion. Thus, maternal HLA diets impact lipids, FA and cardiac function in offspring, with postnatal diet modifying FA and cardiac function in the female offspring.


Asunto(s)
Ácidos Grasos , Ácido Linoleico , Adolescente , Animales , Colesterol , Dieta , Ácidos Grasos Esenciales , Femenino , Humanos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Endogámicas WKY
4.
Am J Physiol Endocrinol Metab ; 318(2): E276-E285, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846371

RESUMEN

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.


Asunto(s)
Dieta , Microbioma Gastrointestinal/fisiología , Ácido Linoleico/farmacología , Adulto , Animales , Peso Corporal , Dieta Alta en Grasa , Heces/microbiología , Femenino , Humanos , Embarazo , ARN Ribosómico 16S , Ratas , Ratas Endogámicas WKY
5.
J Dev Orig Health Dis ; 11(6): 617-622, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31814560

RESUMEN

The endocannabinoid system (ECS), modulated by metabolites of linoleic acid (LA), is important in regulating cardiovascular function. In pregnancy, LA is vital for foetal development. We investigated the effects of elevated LA in H9c2 cardiomyoblasts in vitro and of a high linoleic acid (HLA, 6.21%) or low linoleic acid (LLA, 1.44%) diet during pregnancy in maternal and offspring hearts. H9c2 cell viability was reduced following LA exposure at concentrations between 300 and 1000 µM. HLA diet decreased cannabinoid receptor type 2 (CB2) mRNA expression in foetal hearts from both sexes. However, HLA diet increased CB2 expression in maternal hearts. The mRNA expression of fatty acid amide hydrolase (FAAH) in foetal hearts was higher in females than in males irrespective of diet and N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) mRNA expression showed an interaction between diet and sex. Data indicate that a high LA diet alters cell viability and CB2 expression, potentially influencing cardiac function during pregnancy and development of the offspring's heart.


Asunto(s)
Endocannabinoides/metabolismo , Desarrollo Fetal/fisiología , Corazón/embriología , Ácido Linoleico/efectos adversos , Fenómenos Fisiologicos Nutricionales Maternos , Amidohidrolasas/metabolismo , Animales , Factores de Riesgo Cardiometabólico , Supervivencia Celular , Dieta Alta en Grasa/efectos adversos , Femenino , Ácido Linoleico/administración & dosificación , Masculino , Modelos Animales , Mioblastos Cardíacos , Miocardio/citología , Miocardio/inmunología , Miocardio/metabolismo , Embarazo , Receptor Cannabinoide CB2/metabolismo , Factores Sexuales , Transducción de Señal/inmunología
6.
Clin Exp Pharmacol Physiol ; 47(5): 907-915, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883131

RESUMEN

Maternal nutrition plays a critical role in fetal development and can influence adult onset of disease. Linoleic acid (LA) and alpha-linolenic acid (ALA) are major omega-6 (n-6) and n-3 polyunsaturated fatty acids (PUFA), respectively, that are essential in our diet. LA and ALA are critical for the development of the fetal neurological and immune systems. However, in recent years, the consumption of n-6 PUFA has increased gradually worldwide, and elevated n-6 PUFA consumption may be harmful to human health. Consumption of diets with high levels of n-6 PUFA before or during pregnancy may have detrimental effects on fetal development and may influence overall health of offspring in adulthood. This review discusses the role of n-6 PUFA in fetal programming, the importance of a balance between n-6 and n-3 PUFAs in the maternal diet, and the need of further animal models and human studies that critically evaluate both n-6 and n-3 PUFA contents in diets.


Asunto(s)
Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-6/efectos adversos , Desarrollo Fetal/efectos de los fármacos , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Animales , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Femenino , Edad Gestacional , Humanos , Masculino , Intercambio Materno-Fetal , Estado Nutricional , Placenta/metabolismo , Embarazo , Medición de Riesgo , Factores de Riesgo , Razón de Masculinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA