Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Rev Genet ; 25(2): 83-103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37723347

RESUMEN

Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Humanos , Hombre de Neandertal/genética , Evolución Biológica , ADN , Investigación Genética , Genoma Humano
2.
Curr Biol ; 33(3): 423-433.e5, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36638796

RESUMEN

The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.


Asunto(s)
Pool de Genes , Genoma Humano , Humanos , Historia Antigua , Recién Nacido , Asia , Federación de Rusia , Siberia , Migración Humana , Genética de Población
3.
Nature ; 610(7932): 519-525, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261548

RESUMEN

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Asunto(s)
Hombre de Neandertal , Animales , Femenino , Humanos , Cuevas , Genoma/genética , Hibridación Genética , Hombre de Neandertal/genética , Siberia , ADN Mitocondrial/genética , Cromosoma Y/genética , Masculino , Familia , Homocigoto
4.
Sci Rep ; 12(1): 14528, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008437

RESUMEN

Paleogenomic research can elucidate the evolutionary history of human and faunal populations. Although the Levant is a key land-bridge between Africa and Eurasia, thus far, relatively little ancient DNA data has been generated from this region, since DNA degrades faster in warm climates. As sediments can be a source of ancient DNA, we analyzed 33 sediment samples from different sedimentological contexts in the Paleolithic layers of Sefunim Cave (Israel). Four contained traces of ancient Cervidae and Hyaenidae mitochondrial DNA. Dating by optical luminescence and radiocarbon indicates that the DNA comes from layers between 30,000 and 70,000 years old, surpassing theoretical expectations regarding the longevity of DNA deposited in such a warm environment. Both identified taxa are present in the zooarchaeological record of the site but have since gone extinct from the region, and a geoarchaeological study suggests little movement of the sediments after their deposition, lending further support to our findings. We provide details on the local conditions in the cave, which we hypothesize were particularly conducive to the long-term preservation of DNA-information that will be pertinent for future endeavors aimed at recovering ancient DNA from the Levant and other similarly challenging contexts.


Asunto(s)
ADN Antiguo , Hyaenidae , Animales , Arqueología , Evolución Biológica , Cuevas , Fósiles , Humanos , Recién Nacido , Israel
5.
J Quat Sci ; 37(2): 235-256, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35874301

RESUMEN

The Middle to Upper Palaeolithic transition, between 50 000 and 40 000 years ago, is a period of important ecological and cultural changes. In this framework, the Rock Shelter of Uluzzo C (Apulia, southern Italy) represents an important site due to Late Mousterian and Uluzzian evidence preserved in its stratigraphic sequence. Here, we present the results of a multidisciplinary analysis performed on the materials collected between 2016 and 2018 from the Uluzzian stratigraphic units (SUs) 3, 15 and 17. The analysis involved lithic technology, use-wear, zooarchaeology, ancient DNA of sediments and palaeoproteomics, completed by quartz single-grain optically stimulated luminescence dating of the cave sediments. The lithic assemblage is characterized by a volumetric production and a debitage with no or little management of the convexities (by using the bipolar technique), with the objective to produce bladelets and flakelets. The zooarchaeological study found evidence of butchery activity and of the possible exploitation of marine resources, while drawing a picture of a patchy landscape, composed of open forests and dry open environments surrounding the shelter. Ancient mitochondrial DNA from two mammalian taxa were recovered from the sediments. Preliminary zooarchaeology by mass spectrometry results are consistent with ancient DNA and zooarchaeological taxonomic information, while further palaeoproteomics investigations are ongoing. Our new data from the re-discovery of the Uluzzo C Rock Shelter represent an important contribution to better understand the meaning of the Uluzzian in the context of the Middle/Upper Palaeolithic transition in south-eastern Italy.

6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969841

RESUMEN

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Asunto(s)
Cuevas , ADN Antiguo , Fósiles , Hominidae/genética , Hombre de Neandertal/genética , Animales
7.
Am J Biol Anthropol ; 179(1): 18-30, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36790758

RESUMEN

OBJECTIVES: During the middle-to-upper Paleolithic transition (50,000 and 40,000 years ago), interaction between Neanderthals and Homo sapiens varied across Europe. In southern Italy, the association between Homo sapiens fossils and non-Mousterian material culture, as well as the mode and tempo of Neanderthal demise, are still vividly debated. In this research, we focus on the study of two human teeth by using 3D geometric morphometric approaches for a reliable taxonomical attribution as well as obtaining new radiometric dates on the archeological sequence. MATERIAL AND METHODS: This work presents two lower deciduous molars uncovered at Roccia San Sebastiano (Mondragone-Caserta, Italy), stratigraphically associated with Mousterian (RSS1) and Uluzzian (RSS2) artifacts. To obtain a probabilistic attribution of the two RSS teeth to each reference taxa group composed of Neanderthals and Homo sapiens, we performed and compared the performance of three supervised learning algorithms (flexible discriminant analysis, multiadaptive regression splines, and random forest) on both crown and cervical outlines obtained by virtual morphometric methods. RESULTS: We show that RSS1, whose Mousterian context appears more recent than 44,800-44,230 cal BP, can be attributed to a Neanderthal, while RSS2, found in an Uluzzian context that we dated to 42,640-42,380 cal BP, is attributed to Homo sapiens. DISCUSSION: This site yields the most recent direct evidence for a Neanderthal presence in southern Italy and confirms a later shift to upper Paleolithic technology in southwestern Italy compared to the earliest Uluzzian evidence at Grotta del Cavallo (Puglia, Italy).


Asunto(s)
Hombre de Neandertal , Humanos , Animales , Italia , Europa (Continente) , Diente Primario , Tecnología
8.
Nature ; 595(7867): 399-403, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163072

RESUMEN

Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1-4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8-11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly-possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.


Asunto(s)
Cuevas , ADN Antiguo/análisis , Sedimentos Geológicos/química , Hominidae/genética , Animales , Arqueología , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Fósiles , Historia Antigua , Hombre de Neandertal/genética , Siberia
9.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33858989

RESUMEN

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Animales , Cuevas/química , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Sedimentos Geológicos/química , Filogenia , Población/genética , Análisis de Secuencia de ADN , Siberia , España
10.
Sci Rep ; 11(1): 6815, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767347

RESUMEN

The intervertebral disc's (IVD) annulus fibrosus (AF) retains the hydrostatic pressure of the nucleus pulposus (NP), controls the range of motion, and maintains the integrity of the motion segment. The microstructure of the AF is not yet fully understood and quantitative characterization is lacking, leaving a caveat in modern medicine's ability to prevent and treat disc failure (e.g., disc herniation). In this study, we show a reconstruction of the 3D microstructure of the fibers that constitute the AF via MRI diffusion tensor imaging (DTI) followed by fiber tracking. A quantitative analysis presents an anisotropic structure with significant architectural differences among the annuli along the width of the fibrous belt. These findings indicate that the outer annuli's construction reinforces the IVD while providing a sufficient degree of motion. Our findings also suggest an increased role of the outer annuli in IVD nourishment.


Asunto(s)
Anillo Fibroso/cirugía , Imagenología Tridimensional , Degeneración del Disco Intervertebral/diagnóstico , Degeneración del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/diagnóstico , Desplazamiento del Disco Intervertebral/cirugía , Procedimientos de Cirugía Plástica , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Microscopía de Fuerza Atómica , Cirugía Asistida por Computador/métodos
11.
Science ; 370(6516): 584-587, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122381

RESUMEN

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Asunto(s)
Cuevas , ADN Antiguo/aislamiento & purificación , Sedimentos Geológicos/química , Hominidae/clasificación , Hominidae/genética , Animales , ADN Mitocondrial/genética , Humanos , Filogenia , Tibet
12.
J Hum Evol ; 147: 102867, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889336

RESUMEN

The site of Riparo Broion (Vicenza, northeastern Italy) preserves a stratigraphic sequence documenting the Middle-to-Upper Paleolithic transition, in particular the final Mousterian and the Uluzzian cultures. In 2018, a human tooth was retrieved from a late Mousterian level, representing the first human remain ever found from this rock shelter (Riparo Broion 1). Here, we provide the morphological description and taxonomic assessment of Riparo Broion 1 with the support of classic and virtual morphology, 2D and 3D analysis of the topography of enamel thickness, and DNA analysis. The tooth is an exfoliated right upper deciduous canine, and its general morphology and enamel thickness distribution support attribution to a Neanderthal child. Correspondingly, the mitochondrial DNA sequence from Riparo Broion 1 falls within the known genetic variation of Late Pleistocene Neanderthals, in accordance with newly obtained radiocarbon dates that point to approximately 48 ka cal BP as the most likely minimum age for this specimen. The present work describes novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion. Here, we provide a new full morphological, morphometric, and taxonomic analysis of Riparo Broion 1, in addition to generating the wider reference sample of Neanderthal and modern human upper deciduous canines. This research contributes to increasing the sample of fossil remains from Italy, as well as the number of currently available upper deciduous canines, which are presently poorly documented in the scientific literature.


Asunto(s)
Diente Canino/anatomía & histología , Fósiles/anatomía & histología , Hombre de Neandertal/anatomía & histología , Diente Primario/anatomía & histología , Animales , Italia , Maxilar , Paleodontología
13.
Proc Natl Acad Sci U S A ; 117(26): 15132-15136, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546518

RESUMEN

We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prüfer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prüfer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.


Asunto(s)
Genoma , Hombre de Neandertal/genética , Animales , Evolución Biológica , Femenino , Fósiles , Regulación de la Expresión Génica , Variación Genética , Humanos , Endogamia , Densidad de Población , Federación de Rusia
14.
Bioscience ; 69(11): 877-887, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31719710

RESUMEN

Drivers of Late Quaternary megafaunal extinctions are relevant to modern conservation policy in a world of growing human population density, climate change, and faunal decline. Traditional debates tend toward global solutions, blaming either dramatic climate change or dispersals of Homo sapiens to new regions. Inherent limitations to archaeological and paleontological data sets often require reliance on scant, poorly resolved lines of evidence. However, recent developments in scientific technologies allow for more local, context-specific approaches. In the present article, we highlight how developments in five such methodologies (radiocarbon approaches, stable isotope analysis, ancient DNA, ancient proteomics, microscopy) have helped drive detailed analysis of specific megafaunal species, their particular ecological settings, and responses to new competitors or predators, climate change, and other external phenomena. The detailed case studies of faunal community composition, extinction chronologies, and demographic trends enabled by these methods examine megafaunal extinctions at scales appropriate for practical understanding of threats against particular species in their habitats today.

15.
Science ; 365(6457)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31488661

RESUMEN

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.


Asunto(s)
Pueblo Asiatico/genética , Granjas/historia , Migración Humana/historia , Población/genética , Asia Central , Asia Sudoriental , Flujo Génico , Historia Antigua , Humanos , Irán , Análisis de Secuencia de ADN
16.
Sci Adv ; 5(6): eaaw5873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249872

RESUMEN

Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.


Asunto(s)
Núcleo Celular/genética , ADN/genética , Hombre de Neandertal/genética , Animales , Linaje de la Célula/genética , Europa (Continente) , Evolución Molecular , Fósiles , Genoma/genética , Alemania , Mitocondrias/genética
17.
Nature ; 565(7741): 640-644, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700871

RESUMEN

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Asunto(s)
Cuevas , Fósiles , Hominidae , Datación Radiométrica , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Ciervos , Fémur/química , Sedimentos Geológicos/química , Historia Antigua , Hominidae/genética , Humanos , Hombre de Neandertal/genética , Isótopos de Oxígeno , Siberia , Factores de Tiempo , Diente/química
18.
Clin Anat ; 32(1): 84-89, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30198179

RESUMEN

The ratio between the sagittal diameter of the spinal canal and the sagittal diameter of the vertebral body, known as the "Torg ratio", is often used to test for spinal canal narrowing. Here, we investigate this ratio in a large population, consisting of two ethnicities, both sexes and three age groups. Measurements were taken on the dry cervical verterbrae (C3-C7) of 277 individuals using a digital apparatus allowing for the recording of 3D coordinates of a set of landmarks on the vertebral body. Vertebral body and vertebral foramen lengths were compared across the different subgroups. Vertebral body and vertebral foramen lengths differ significantly between males and females and between African Americans and European Americans. With age, the vertebral body length increases while the foramen length does not undergo significant changes. These anatomical differences are reflected in differences in the Torg ratio calculated for the different subgroups. In conclusion, our findings suggest that a hard cutoff on the Torg ratio used to define a pathological narrowing of the cervical spine should be adapted to the population the patients come from. Clin. Anat. 32: 84-89, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Vértebras Cervicales/anatomía & histología , Negro o Afroamericano/estadística & datos numéricos , Factores de Edad , Femenino , Humanos , Masculino , Valores de Referencia , Factores Sexuales , Población Blanca/estadística & datos numéricos
19.
Anat Rec (Hoboken) ; 302(2): 226-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30290057

RESUMEN

Vertebral osteophytes are an age-dependent manifestation of degenerative changes in the spine. We aimed to determine the prevalence and severity of cervical osteophytosis in a large study population. To do so, we developed a grading system for osteophytosis, enabling the assessment of their presence and severity in the cervical spine, and applied it to the analysis of dried cervical vertebral bodies (C3-C7) from 273 individuals. Statistical analyses were carried out per motion segment, while testing for the effect of age, sex, and ethnicity. The highest prevalence of osteophytes was found in motion segment C5/C6 (48.2%), followed by C4/C5 (44.1%), and last C6/C7 and C3/C4 (40.5%). Severe osteophytes are most commonly seen in motion segment C5/C6. In all motion segments, the inferior discal surface of the upper vertebra manifests more osteophytes than the superior discal surface of the lower one. Osteophytes prevalence is sex-dependent only in the upper cervical vertebrae (C3-C4), and age- and ethnicity-dependent for all vertebrae. Anat Rec, 302:226-231, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Vértebras Cervicales/fisiopatología , Etnicidad/estadística & datos numéricos , Osteofito/fisiopatología , Adulto , Fenómenos Biomecánicos , Demografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Factores Sexuales , Adulto Joven
20.
Nature ; 561(7721): 113-116, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30135579

RESUMEN

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Asunto(s)
Hominidae/genética , Hibridación Genética/genética , Hombre de Neandertal/genética , Alelos , Animales , Padre , Femenino , Flujo Génico/genética , Genoma , Genómica , Historia Antigua , Humanos , Masculino , Madres , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA