Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Big Data ; 7: 1371518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946939

RESUMEN

Introduction: Hyperdimensional Computing (HDC) is a brain-inspired and lightweight machine learning method. It has received significant attention in the literature as a candidate to be applied in the wearable Internet of Things, near-sensor artificial intelligence applications, and on-device processing. HDC is computationally less complex than traditional deep learning algorithms and typically achieves moderate to good classification performance. A key aspect that determines the performance of HDC is encoding the input data to the hyperdimensional (HD) space. Methods: This article proposes a novel lightweight approach relying only on native HD arithmetic vector operations to encode binarized images that preserves the similarity of patterns at nearby locations by using point of interest selection and local linear mapping. Results: The method reaches an accuracy of 97.92% on the test set for the MNIST data set and 84.62% for the Fashion-MNIST data set. Discussion: These results outperform other studies using native HDC with different encoding approaches and are on par with more complex hybrid HDC models and lightweight binarized neural networks. The proposed encoding approach also demonstrates higher robustness to noise and blur compared to the baseline encoding.

2.
Neural Comput ; 35(12): 2006-2023, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37844327

RESUMEN

Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This letter proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples but also samples that are correctly classified by the HDC model but with low confidence. We introduce a confidence threshold that can be tuned for each data set to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET, and HAND data sets for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift toward higher confidence values of the correctly classified samples, making the classifier not only more accurate but also more confident about its predictions.

3.
J Neural Eng ; 20(2)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36791462

RESUMEN

Objective. Automated artefact detection in the neonatal electroencephalogram (EEG) is crucial for reliable automated EEG analysis, but limited availability of expert artefact annotations challenges the development of deep learning models for artefact detection. This paper proposes a semi-supervised deep learning approach for artefact detection in neonatal EEG that requires few labelled data by training a multi-task convolutional neural network (CNN).Approach. An unsupervised and a supervised objective were jointly optimised by combining an autoencoder and an artefact classifier in one multi-output model that processes multi-channel EEG inputs. The proposed semi-supervised multi-task training strategy was compared to a classical supervised strategy and other existing state-of-the-art models. The models were trained and tested separately on two different datasets, which contained partially annotated multi-channel neonatal EEG. Models were evaluated using the F1-statistic and the relevance of the method was investigated in the context of a functional brain age (FBA) prediction model.Main results. The proposed multi-task and multi-channel CNN methods outperformed state-of-the-art methods, reaching F1 scores of 86.2% and 95.7% on two separate datasets. The proposed semi-supervised multi-task training strategy was shown to be superior to a classical supervised training strategy when the amount of labels in the dataset was artificially reduced. Finally, we found that the error of a brain age prediction model correlated with the amount of automatically detected artefacts in the EEG segment.Significance. Our results show that the proposed semi-supervised multi-task training strategy can train CNNs successfully even when the amount of labels in the dataset is limited. Therefore, this method is a promising semi-supervised technique for developing deep learning models with scarcely labelled data. Moreover, a correlation between the error of FBA estimates and the amount of detected artefacts in the corresponding EEG segments indicates the relevance of artefact detection for robust automated EEG analysis.


Asunto(s)
Artefactos , Redes Neurales de la Computación , Electroencefalografía/métodos , Aprendizaje Automático Supervisado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA