Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NPJ Regen Med ; 9(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167866

RESUMEN

Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.

2.
J Neurosci ; 43(7): 1143-1153, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36732069

RESUMEN

Cerebral creatine deficiency syndrome (CCDS) is an inborn error of metabolism characterized by intellectual delays, seizures, and autistic-like behavior. However, the role of endogenously synthesized creatine on CNS development and function remains poorly understood. Here, magnetic resonance spectroscopy of adult mouse brains from both sexes revealed creatine synthesis is dependent on the expression of the enzyme, guanidinoacetate methyltransferase (GAMT). To identify Gamt-expressed cells, and how Gamt affects postnatal CNS development, we generated a mouse line by knocking-in a GFP, which is expressed on excision of Gamt We found that Gamt is expressed in mature oligodendrocytes during active myelination in the developing postnatal CNS. Homozygous deletion of Gamt resulted in significantly reduced mature oligodendrocytes and delayed myelination in the corpus callosum. Moreover, the absence of endogenous creatine resulted in altered AMPK signaling in the brain, reduced brain creatine kinase expression in cortical neurons, and signs of axonal damage. Experimental demyelination in mice after tamoxifen-induced conditional deletion of Gamt in oligodendrocyte lineage cells resulted in delayed maturation of oligodendrocytes and myelin coverage in lesions. Moreover, creatine and cyclocreatine supplementation can enhance remyelination after demyelination. Our results suggest endogenously synthesized creatine controls the bioenergetic demand required for the timely maturation of oligodendrocytes during postnatal CNS development, and that delayed myelination and altered CNS energetics through the disruption of creatine synthesis might contribute to conditions, such as CCDS.SIGNIFICANCE STATEMENT Cerebral creatine deficiency syndrome is a rare disease of inborn errors in metabolism, which is characterized by intellectual delays, seizures, and autism-like behavior. We found that oligodendrocytes are the main source of endogenously synthesized creatine in the adult CNS, and the loss of endogenous creatine synthesis led to delayed myelination. Our study suggests impaired cerebral creatine synthesis affects the timing of myelination and may impact brain bioenergetics.


Asunto(s)
Enfermedades Desmielinizantes , Discapacidad Intelectual , Masculino , Femenino , Ratones , Animales , Creatina/metabolismo , Homocigoto , Eliminación de Secuencia , Oligodendroglía/metabolismo , Discapacidad Intelectual/genética , Enfermedades Desmielinizantes/patología , Convulsiones
3.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879367

RESUMEN

Myelination of the CNS relies on the production and differentiation of oligodendrocyte (OL) precursor cells (OPCs) into mature OLs. During the first month of postnatal life, OPCs that populate the corpus callosum (CC) arise from neural stem cells (NSCs) in the subcallosal subventricular zone (SVZ), and then differentiate to generate myelinating OLs. However, the signals that regulate these processes are not fully understood. In this study, we show that endogenous expression of the retinoic acid (RA)-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2) is required for OPC generation and differentiation in the postnatal subcortical white matter. In male and female pups, conditional deletion of Raldh2 reduced OPC numbers and differentiation. Moreover, decreased OPC numbers coincided with reductions in NSC survival and expression of the sonic hedgehog (SHH) signaling effector protein Gli1 in the SVZ. Additionally, GFAP expression in the CC was decreased, and cortical neuron numbers were altered. Our work suggests a role for endogenous RALDH2-dependent RA synthesis in OPC production and differentiation in the CC, as well as in the development of other cell types derived from NSCs in the embryonic ventricular zone (VZ) and SVZ, as well as the postnatal subcallosal SVZ.


Asunto(s)
Cuerpo Calloso , Células Precursoras de Oligodendrocitos , Tretinoina , Aldehído Oxidorreductasas , Animales , Diferenciación Celular , Femenino , Masculino , Ratones , Oligodendroglía , Tretinoina/fisiología
4.
Proc Natl Acad Sci U S A ; 116(28): 14290-14299, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235582

RESUMEN

Animal models of central nervous system (CNS) demyelination, including toxin-induced focal demyelination and immune-mediated demyelination through experimental autoimmune encephalomyelitis (EAE), have provided valuable insights into the mechanisms of neuroinflammation and CNS remyelination. However, the ability to track changes in transcripts, proteins, and metabolites, as well as cellular populations during the evolution of a focal lesion, has remained challenging. Here, we developed a method to label CNS demyelinating lesions by the intraperitoneal injection of a vital dye, neutral red (NR), into mice before killing. We demonstrate that NR-labeled lesions can be easily identified on the intact spinal cord in both lysolecithin- and EAE-mediated demyelination models. Using fluorescence microscopy, we detected NR in activated macrophages/microglia and astrocytes, but not in oligodendrocytes present in lesions. Importantly, we successfully performed RT-qPCR, Western blot, flow cytometry, and mass spectrometry analysis of precisely dissected NR-labeled lesions at 5, 10, and 20 d postlesion (dpl) and found differential changes in transcripts, proteins, cell populations, and metabolites in lesions over the course of remyelination. Therefore, NR administration is a simple and powerful method to track and analyze the detailed molecular, cellular, and metabolic changes that occur within the lesion microenvironment over time following CNS injury. Furthermore, this method can be used to identify molecular and metabolic pathways that regulate neuroinflammation and remyelination and facilitate the development of therapies to promote repair in demyelinating disorders such as multiple sclerosis.


Asunto(s)
Sistema Nervioso Central/diagnóstico por imagen , Microglía/efectos de los fármacos , Esclerosis Múltiple/diagnóstico por imagen , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/ultraestructura , Microambiente Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Lisofosfatidilcolinas/toxicidad , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/ultraestructura , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Regeneración Nerviosa/efectos de los fármacos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Rojo Neutro/farmacología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Remielinización/efectos de los fármacos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
5.
Neuroscientist ; 25(4): 334-343, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30122106

RESUMEN

The human brain weighs approximately 2% of the body; however, it consumes about 20% of a person's total energy intake. Cellular bioenergetics in the central nervous system involves a delicate balance between biochemical processes engaged in energy conversion and those responsible for respiration. Neurons have high energy demands, which rely on metabolic coupling with glia, such as with oligodendrocytes and astrocytes. It has been well established that astrocytes recycle and transport glutamine to neurons to make the essential neurotransmitters, glutamate and GABA, as well as shuttle lactate to support energy synthesis in neurons. However, the metabolic role of oligodendrocytes in the central nervous system is less clear. In this review, we discuss the energetic demands of oligodendrocytes in their survival and maturation, the impact of altered oligodendrocyte energetics on disease pathology, and the role of energetic metabolites, taurine, creatine, N-acetylaspartate, and biotin, in regulating oligodendrocyte function.


Asunto(s)
Axones/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Esclerosis Múltiple/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA