Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38115641

RESUMEN

Significance: Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Recent Advances: Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects via the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Critical Issues: Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. Future Directions: An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.

2.
Proteomics ; 22(9): e2100227, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35014747

RESUMEN

The seminal vesicles are male accessory sex glands that contribute the major portion of the seminal plasma in which mammalian spermatozoa are bathed during ejaculation. In addition to conveying sperm through the ejaculatory duct, seminal vesicle secretions support sperm survival after ejaculation, and influence the female reproductive tract to promote receptivity to pregnancy. Analysis of seminal vesicle fluid (SVF) composition by proteomics has proven challenging, due to its highly biased protein signature with a small subset of dominant proteins and the difficulty of solubilizing this viscous fluid. As such, publicly available proteomic datasets identify only 85 SVF proteins in total. To address this limitation, we report a new preparative methodology involving sequential solubilization of mouse SVF in guanidine hydrochloride, acetone precipitation, and analysis by label-free mass spectrometry. Using this strategy, we identified 126 SVF proteins, including 83 previously undetected in SVF. Members of the seminal vesicle secretory protein family were the most abundant, accounting for 79% of all peptide spectrum matches. Functional analysis identified inflammation and formation of the vaginal plug as the two most prominent biological processes. Other notable processes included modulation of sperm function and regulation of the female reproductive tract immune environment. Together, these findings provide a robust methodological framework for future SVF studies and identify novel proteins with potential to influence both male and female reproductive physiology.


Asunto(s)
Proteómica , Vesículas Seminales , Animales , Femenino , Masculino , Mamíferos , Ratones , Embarazo , Proteínas/metabolismo , Proteómica/métodos , Semen/metabolismo , Vesículas Seminales/metabolismo , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA