Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180345

RESUMEN

Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A new P-odd and T-odd interaction between polarized and unpolarized nucleons proportional to s⃗⋅r̂ is one such possibility, where r⃗=rr̂ is the spatial vector connecting the nucleons, and s⃗ is the spin of the polarized nucleon. Such an interaction involving a scalar coupling gsN at one vertex and a pseudoscalar coupling gpn at the polarized nucleon vertex can be induced by the exchange of spin-0 pseudoscalar bosons. We describe a new technique to search for interactions of this form and present the first measurements of this type. We show that future improvements to this technique can improve the laboratory upper bound on the product gsNgpn by two orders of magnitude for interaction ranges at the 100 micron scale.

2.
Nat Commun ; 11(1): 930, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071293

RESUMEN

The development of qualitatively new measurement capabilities is often a prerequisite for critical scientific and technological advances. Here we introduce an unconventional quantum probe, an entangled neutron beam, where individual neutrons can be entangled in spin, trajectory and energy. The spatial separation of trajectories from nanometers to microns and energy differences from peV to neV will enable investigations of microscopic magnetic correlations in systems with strongly entangled phases, such as those believed to emerge in unconventional superconductors. We develop an interferometer to prove entanglement of these distinguishable properties of the neutron beam by observing clear violations of both Clauser-Horne-Shimony-Holt and Mermin contextuality inequalities in the same experimental setup. Our work opens a pathway to a future of entangled neutron scattering in matter.

3.
Phys Rev Lett ; 122(22): 221802, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283255

RESUMEN

An observation of neutron-antineutron oscillations (n-n[over ¯]), which violate both B and B-L conservation, would constitute a scientific discovery of fundamental importance to physics and cosmology. A stringent upper bound on its transition rate would make an important contribution to our understanding of the baryon asymmetry of the Universe by eliminating the postsphaleron baryogenesis scenario in the light quark sector. We show that one can design an experiment using slow neutrons that in principle can reach the required sensitivity of τ_{n-n[over ¯]}∼10^{10} s in the oscillation time, an improvement of ∼10^{4} in the oscillation probability relative to the existing limit for free neutrons. The improved statistical accuracy needed to reach this sensitivity can be achieved by allowing both the neutron and antineutron components of the developing superposition state to coherently reflect from mirrors. We present a quantitative analysis of this scenario and show that, for sufficiently small transverse momenta of n/n[over ¯] and for certain choices of nuclei for the n/n[over ¯] guide material, the relative phase shift of the n and n[over ¯] components upon reflection and the n[over ¯] annihilation rate can be small enough to maintain sufficient coherence to benefit from the greater phase space acceptance the mirror provides.

4.
Phys Rev C ; 100(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-35005330

RESUMEN

Neutron spin rotation is expected from quark-quark weak interactions in the standard model, which induce weak interactions among nucleons that violate parity. We present the results from an experiment searching for the effect of parity violation via the spin rotation of polarized neutrons in a liquid 4He medium. The value for the neutron spin rotation angle per unit length in 4He, d ϕ / d z = [ + 2.1 ± 8.3 (stat.) - 0.2 + 2.9 (sys.) ] × 10 - 7 rad/m, is consistent with zero. The result agrees with the best current theoretical estimates of the size of nucleon-nucleon weak amplitudes from other experiments and with the expectations from recent theoretical approaches to weak nucleon-nucleon interactions. In this paper we review the theoretical status of parity violation in the n → + 4He system and discuss details of the data analysis leading to the quoted result. Analysis tools are presented that quantify systematic uncertainties in this measurement and that are expected to be essential for future measurements.

5.
Metrologia ; 552018.
Artículo en Inglés | MEDLINE | ID: mdl-30983634

RESUMEN

A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performed to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha-gamma method and present details of how the measurement was performed including the systematic effects. We also describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.

6.
Rev Sci Instrum ; 87(12): 123507, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28040910

RESUMEN

Neutron interferometry enables precision measurements that are typically operated within elaborate, multi-layered facilities which provide substantial shielding from environmental noise. These facilities are necessary to maintain the coherence requirements in a perfect crystal neutron interferometer which is extremely sensitive to local environmental conditions such as temperature gradients across the interferometer, external vibrations, and acoustic waves. The ease of operation and breadth of applications of perfect crystal neutron interferometry would greatly benefit from a mode of operation which relaxes these stringent isolation requirements. Here, the INDEX Collaboration and National Institute of Standards and Technology demonstrates the functionality of a neutron interferometer in vacuum and characterize the use of a compact vacuum chamber enclosure as a means to isolate the interferometer from spatial temperature gradients and time-dependent temperature fluctuations. The vacuum chamber is found to have no depreciable effect on the performance of the interferometer (contrast) while improving system stability, thereby showing that it is feasible to replace large temperature isolation and control systems with a compact vacuum enclosure for perfect crystal neutron interferometry.

7.
Phys Rev D ; 93(6)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34859165

RESUMEN

The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling ß ranging from ß < 4.7 × 106 for a Ratra-Peebles index of n = 1 in the nonlinear scalar field potential to ß < 2.4 × 107 for n = 6, one order of magnitude more sensitive than the most recent free neutron limit for intermediate n. Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.

8.
Rev Sci Instrum ; 86(5): 055101, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26026552

RESUMEN

We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.

9.
Rev Sci Instrum ; 86(2): 023902, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25725858

RESUMEN

We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of (3)He. We describe the performance of the analyser along with a study of the (3)He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

10.
Eur Phys J C Part Fields ; 74(10): 2981, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25972760

RESUMEN

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

11.
Phys Rev Lett ; 111(22): 222501, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24329445

RESUMEN

The most precise determination of the neutron lifetime using the beam method was completed in 2005 and reported a result of τ(n)=(886.3±1.2[stat]±3.2[syst]) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was measured with a neutron monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the evaluated nuclear data file, ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. In the current work, we measure the detection efficiency of the same monitor used in the neutron lifetime measurement with a second, totally absorbing neutron detector. This direct approach does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The detection efficiency is consistent with the value used in 2005 but is measured with a precision of 0.057%, which represents a fivefold improvement in the uncertainty. We verify the temporal stability of the neutron monitor through ancillary measurements, allowing us to apply the measured neutron monitor efficiency to the lifetime result from the 2005 experiment. The updated lifetime is τ(n)=(887.7±1.2[stat]±1.9[syst]) s.

12.
Phys Rev Lett ; 110(8): 082003, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473134

RESUMEN

Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A parity-odd interaction between polarized nucleons and unpolarized matter proportional to g(V)g(A)s · p is one such possibility, where s[over →] and p[over →] are the spin and the momentum of the polarized nucleon, and g(V) and g(A) are the vector and axial vector couplings of an interaction induced by the exchange of a new light vector boson. We report a new experimental upper bound on such possible long-range parity-odd interactions of the neutron with nucleons and electrons from a recent search for parity violation in neutron spin rotation in liquid ^{4}He. Our constraint on the product of vector and axial vector couplings of a possible new light vector boson is g(V) g(A)(n) ≤ 10(-32) for an interaction range of 1 m. This upper bound is more than 7 orders of magnitude more stringent than the existing laboratory constraints for interaction ranges below 1 m, corresponding to a broad range of vector boson masses above 10(-6) eV. More sensitive searches for a g(V) g(A)(n) coupling could be performed using neutron spin rotation measurements in heavy nuclei or through analysis of experiments conducted to search for nucleon-nucleon weak interactions and nuclear anapole moments.

13.
Phys Rev Lett ; 111(10): 102001, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166656

RESUMEN

Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A new P-odd and T-odd interaction between polarized and unpolarized nucleons proportional to K·r is one such possibility, where r is the distance between the nucleons and K is the spin of the polarized nucleon. Such an interaction involving a scalar coupling gs at one vertex and a pseudoscalar coupling gp at the polarized nucleon vertex can be induced by the exchange of spin-0 bosons. We used the NMR cell test station at Northrop Grumman Corporation to search for NMR frequency shifts in polarized 129Xe and 131Xe when a nonmagnetic zirconia rod is moved near the NMR cell. Long (T2∼20 s) spin-relaxation times allow precision measurements of the NMR frequency ratios, which are insensitive to magnetic field fluctuations. Combined with existing theoretical calculations of the neutron spin contribution to the nuclear angular momentum in xenon nuclei, the measurements improve the laboratory upper bound on the product gsgp(n) by 2 orders of magnitude for distances near 1 mm. The sensitivity of this technique can be increased by at least two more orders of magnitude.

14.
Neuroscience ; 147(1): 90-6, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17512672

RESUMEN

Symptoms of high altitude sickness including headache and neuropsychological dysfunction are thought to result from prolonged exposure to hypoxia. In order to explain how the brain adapts to lower oxygen pressure at high altitude, CD1 mice were exposed to 3 weeks of hypobaric hypoxic conditions. Analyses of the neuronal morphology of striatal medium spiny neurons (MSNs) revealed a significant decrease in dendritic length, yet no change in dendritic volume, in hypoxic mice relative to normoxic mice. Vascular data indicated an increase in blood vessel area in the striatum of mice exposed to prolonged hypoxia. A mouse model of high altitude exposure may assist in elucidating the mechanisms of cerebral adaptation to high altitudes in humans, and therefore aid in developing successful prevention techniques and treatment of problems associated with high altitude disease.


Asunto(s)
Vasos Sanguíneos/fisiología , Hipoxia de la Célula , Dendritas/fisiología , Neostriado/citología , Adaptación Fisiológica , Mal de Altura/fisiopatología , Animales , Vasos Sanguíneos/citología , Circulación Cerebrovascular/fisiología , Dendritas/clasificación , Modelos Animales de Enfermedad , Ratones , Neostriado/irrigación sanguínea , Neuronas/citología , Consumo de Oxígeno/fisiología , Distribución Aleatoria
15.
J Res Natl Inst Stand Technol ; 110(3): 153-5, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308113

RESUMEN

A new pulsed neutron source is under construction at the Indiana University Cyclotron Facility (IUCF). Neutrons are produced via (p,n) reactions by a low-energy proton beam incident on a thin beryllium target. The source is tightly coupled to a cold methane moderator held at a temperature of 20 K or below. The resulting time-averaged cold neutron flux is expected to be comparable to that of the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory. The initial experimental suite will include instrumentation for small angle neutron scattering (SANS), moderator studies, radiography, and zero-field spin-echo SANS.

16.
J Res Natl Inst Stand Technol ; 110(3): 161-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308115

RESUMEN

Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.

17.
J Res Natl Inst Stand Technol ; 110(3): 195-203, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308121

RESUMEN

The NPDGamma experiment will measure the parity-violating directional gamma ray asymmetry A γ in the reaction [Formula: see text]. Ultimately, this will constitute the first measurement in the neutron-proton system that is sensitive enough to challenge modern theories of nuclear parity violation, providing a theoretically clean determination of the weak pion-nucleon coupling. A new beam-line at the Los Alamos Neutron Science Center (LANSCE) delivers pulsed cold neutrons to the apparatus, where they are polarized by transmission through a large volume polarized (3)He spin filter and captured in a liquid para-hydrogen target. The 2.2 MeV gamma rays from the capture reaction are detected in an array of CsI(Tl) scintillators read out by vacuum photodiodes operated in current mode. We will complete commissioning of the apparatus and carry out a first measurement at LANSCE in 2004-05, which would provide a statistics-limited result for A γ accurate to a standard uncertainty of ±5 × 10(-8) level or better, improving on existing measurements in the neutron-proton system by a factor of 4. Plans to move the experiment to a reactor facility, where the greater flux would enable us to make a measurement with a standard uncertainty of ±1 × 10(-8), are actively being pursued for the longer term.

18.
J Res Natl Inst Stand Technol ; 110(3): 215-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308124

RESUMEN

The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

19.
J Res Natl Inst Stand Technol ; 110(3): 189-94, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308120

RESUMEN

The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress.

20.
J Res Natl Inst Stand Technol ; 110(3): 205-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308122

RESUMEN

In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φ PV ( n ,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φ PV ( n ,α) = (8.0 ±14(stat) ±2.2(syst)) ×10(-7) rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10(-7) rad/m.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA