RESUMEN
Chemical investigation of the tubers of Sinningia reitzii led to the isolation of five new naphthoquinones, 8-hydroxydehydrodunnione (1), 7-hydroxydehydrodunnione (2), 5-hydroxy-6,7-dimethoxy-α-dunnione (3), 5-hydroxy-6,7-dimethoxydunniol (4), and 8-hydroxy-7-methoxy-2-O-methylstreptocarpone (5). Three known naphthoquinones, 7-hydroxy-α-dunnione, 8-hydroxydunnione, and 6,8-dihydroxy-7-methoxy-2-O-methyldunniol, were also identified. When tested for anti-inflammatory activity in a mouse model, compound 1 (50-500 pg/paw) reduced the edema induced by carrageenan in a dose-dependent fashion. The highest dose showed a similar inhibition to that observed for the positive control dexamethasone. At lower doses (5-10 pg/paw), 1 also dose dependently reduced the mechanical hyperalgesia induced by carrageenan. Compound 1 (15 pg/paw) abolished the mechanical hyperalgesia induced by prostaglandin E2 and dopamine, but not that induced by dibutyryl cyclic AMP. Dipyrone (320 µg/paw) completely abolished the hyperalgesia induced by these algogens. Additionally, compound 1 did not alter heat-induced nociception. These results suggest that this new naphthoquinone exhibits important anti-inflammatory and antinociceptive activities, which is dissimilar to that of most known analgesics.