Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Microbiol ; 24(1): 129, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643099

RESUMEN

The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.


Asunto(s)
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Glycine max , Fenómenos Fisiológicos Celulares , Fenotipo , Simbiosis
2.
Environ Microbiol ; 25(12): 3255-3268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813828

RESUMEN

The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.


Asunto(s)
Aminoácidos , Células Procariotas , Composición de Base , Aminoácidos/análisis , Codón , Proteoma/genética
3.
Environ Microbiol ; 25(12): 3052-3063, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658654

RESUMEN

Microbes are often discussed in terms of dichotomies such as copiotrophic/oligotrophic and fast/slow-growing microbes, defined using the characterisation of microbial growth in isolated cultures. The dichotomies are usually qualitative and/or study-specific, sometimes precluding clear-cut results interpretation. We can unravel microbial dichotomies as life history strategies by combining ecology theory with Monod curves, a laboratory mathematical tool of bacterial physiology that relates the specific growth rate of a microbe with the concentration of a limiting nutrient. Fitting of Monod curves provides quantities that directly correspond to key parameters in ecological theories addressing species coexistence and diversity, such as r/K selection theory, resource competition and community structure theory and the CSR triangle of life strategies. The resulting model allows us to reconcile the copiotrophic/oligotrophic and fast/slow-growing dichotomies as different subsamples of a life history strategy triangle that also includes r/K strategists. We also used the number of known carbon sources together with community structure theory to partially explain the diversity of heterotrophic microbes observed in metagenomics experiments. In sum, we propose a theoretical framework for the study of natural microbial communities that unifies several existing proposals. Its application would require the integration of metagenomics, metametabolomics, Monod curves and carbon source data.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Procesos Heterotróficos , Metagenómica , Carbono
4.
Trends Microbiol ; 31(9): 879-881, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495486

RESUMEN

Antimicrobial resistance in Acinetobacter baumannii is a major concern. Natural transformation remains understudied as a horizontal gene transfer (HGT) mechanism for the spread of resistance genes. Recent work (Vesel et al.) reveals a profound impact of the state of donor DNA methylation with strong implications for HGT of resistance determinants in this worrisome pathogen.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Metilación , Antibacterianos , Transferencia de Gen Horizontal , Pruebas de Sensibilidad Microbiana
5.
Environ Microbiol ; 25(7): 1232-1237, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36856667

RESUMEN

Nearly 100 years ago, Winogradsky published a classic communication in which he described two groups of microbes, zymogenic and autochthonous. When organic matter penetrates the soil, zymogenic microbes quickly multiply and degrade it, then giving way to the slow combustion of autochthonous microbes. Although the text was originally written in French, it is often cited by English-speaking authors. We undertook a complete translation of the 1924 publication, which we provide as Supporting information. Here, we introduce the translation and describe how the zymogenic/autochthonous dichotomy shaped research questions in the study of microbial diversity and physiology. We also identify in the literature three additional and closely related dichotomies, which we propose to call exclusive copiotrophs/oligotrophs, coexisting copiotrophs/oligotrophs and fast-growing/slow-growing microbes. While Winogradsky focussed on a successional view of microbial populations over time, the current discussion is focussed on the differences in the specific growth rate of microbes as a function of the concentration of a given limiting substrate. In the future, it will be relevant to keep in mind both nutrient-focussed and time-focussed microbial dichotomies and to design experiments with both isolated laboratory cultures and multi-species communities in the spirit of Winogradsky's direct method.


Asunto(s)
Bacterias , Microbiología del Suelo , Biodiversidad , Bacterias/clasificación , Bacterias/citología , Bacterias/metabolismo , Suelo/química , Ecosistema
6.
mBio ; 14(2): e0343222, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36861972

RESUMEN

It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.


Asunto(s)
Vibrio cholerae , Vibrio cholerae/genética , Proteínas Ribosómicas/genética , Genoma Bacteriano , Mutación , Cromosomas , Proteínas Bacterianas/genética
7.
Sci Rep ; 11(1): 4737, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637791

RESUMEN

In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an "urgent threat." Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, infections of the urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, an unwelcome complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, understanding how A. baumannii adapts to different host environments, such as cerebrospinal fluid (CSF) that may trigger changes in expression of virulence factors that are associated with the successful establishment and progress of this infection is necessary. The present in-vitro work describes, the genetic changes that occur during A. baumannii infiltration into CSF and displays A. baumannii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and other virulence determinants that was confirmed in various model systems. Furthermore, although CSF's presence did not enhance bacterial growth, an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery was observed. This work also explores A. baumannii's response to an essential component, human serum albumin (HSA), within CSF to trigger the differential expression of genes associated with its pathoadaptibility in this environment.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Líquido Cefalorraquídeo , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Animales , Farmacorresistencia Bacteriana Múltiple , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Albúmina Sérica/farmacología , Transcriptoma/efectos de los fármacos , Factores de Virulencia/genética
8.
BMC Biol ; 18(1): 43, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349767

RESUMEN

BACKGROUND: In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. RESULTS: We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. CONCLUSIONS: The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dosificación de Gen , Genes Bacterianos , Origen de Réplica , Proteínas Ribosómicas/metabolismo , Vibrio cholerae/genética , Replicación del ADN , ADN Bacteriano/fisiología , Vibrio cholerae/crecimiento & desarrollo
9.
Molecules ; 24(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234313

RESUMEN

Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Oligonucleótidos/química , Etilenos/química
10.
Int J Antimicrob Agents ; 53(4): 483-490, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30611868

RESUMEN

The human pathogen Acinetobacter baumannii possesses high genetic plasticity and frequently acquires antimicrobial resistance genes. Here we investigated the role of natural transformation in these processes. Genomic DNA from different sources, including from carbapenem-resistant Klebsiella pneumoniae strains, was mixed with A. baumannii A118 cells. Selected transformants were analysed by whole-genome sequencing. In addition, bioinformatics analyses and in silico gene flow prediction were also performed to support the experimental results. Transformant strains included some that became resistant to carbapenems or changed their antimicrobial susceptibility profile. Foreign DNA acquisition was confirmed by whole-genome analysis. The acquired DNA most frequently identified corresponded to mobile genetic elements, antimicrobial resistance genes and operons involved in metabolism. Bioinformatics analyses and in silico gene flow prediction showed continued exchange of genetic material between A. baumannii and K. pneumoniae when they share the same habitat. Natural transformation plays an important role in the plasticity of A. baumannii and concomitantly in the emergence of multidrug-resistant strains.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae/genética , Transformación Bacteriana/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , ADN Bacteriano/genética , Genoma Bacteriano/genética , Humanos , Secuencias Repetitivas Esparcidas/genética , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma
11.
PLoS One ; 13(7): e0200651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001428

RESUMEN

No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.


Asunto(s)
Biodiversidad , Burkholderia , Producción de Cultivos , Microbiología del Suelo , Suelo , Argentina , Burkholderia/clasificación , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación
12.
Methods Mol Biol ; 1737: 89-98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484589

RESUMEN

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.


Asunto(s)
Bacterias/genética , Péptidos de Penetración Celular/farmacología , Oligorribonucleótidos Antisentido/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Ribonucleasa P/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Oligorribonucleótidos Antisentido/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética
13.
mBio ; 8(1)2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28246358

RESUMEN

Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen.IMPORTANCE The role of gene order within the bacterial chromosome is poorly understood. In fast growers, the location of genes linked with the expression of genetic information (i.e., transcription and translation) is biased toward oriC It was proposed that the location of these genes helps to maximize their expression by recruiting multifork replication during fast growth. Our results show that such genomic positioning impacts cell fitness beyond fast-growth conditions, probably across the whole life cycle of fast growers. Thus, the genomic position of key highly expressed genes, such as RP, was finely tuned during the evolution of fast-growing bacteria and may also be important in slow growers. In the near future, many more genes whose genomic position impacts bacterial phenotype will be described. These studies will contribute to discovery the rules of genome organization and application of them for the design of synthetic chromosomes and the creation of artificial life forms.


Asunto(s)
Replicación del ADN , Orden Génico , Complejo de Reconocimiento del Origen , Proteínas Ribosómicas/genética , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/genética
14.
Biol Methods Protoc ; 1(1)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27857983

RESUMEN

EGSs (external guide sequences) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNA), modified ribonucleotides that contain a bridge at the 2',4'-position of the ribose. LNA and the second generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6')-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5'- and 3'-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell penetrating peptide (CPP), the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.

15.
Antimicrob Agents Chemother ; 60(8): 4920-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27270286

RESUMEN

The increasing frequency of bacteria showing antimicrobial resistance (AMR) raises the menace of entering into a postantibiotic era. Horizontal gene transfer (HGT) is one of the prime reasons for AMR acquisition. Acinetobacter baumannii is a nosocomial pathogen with outstanding abilities to survive in the hospital environment and to acquire resistance determinants. Its capacity to incorporate exogenous DNA is a major source of AMR genes; however, few studies have addressed this subject. The transformation machinery as well as the factors that induce natural competence in A. baumannii are unknown. In this study, we demonstrate that naturally competent strain A118 increases its natural transformation frequency upon the addition of Ca(2+)or albumin. We show that comEA and pilQ are involved in this process since their expression levels are increased upon the addition of these compounds. An unspecific protein, like casein, does not reproduce this effect, showing that albumin's effect is specific. Our work describes the first specific inducers of natural competence in A. baumannii Overall, our results suggest that the main protein in blood enhances HGT in A. baumannii, contributing to the increase of AMR in this threatening human pathogen.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Calcio/farmacología , Infección Hospitalaria/microbiología , Competencia de la Transformación por ADN/efectos de los fármacos , Albúmina Sérica/farmacología , ADN/genética , Competencia de la Transformación por ADN/genética , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Humanos
16.
PLoS Genet ; 11(4): e1005156, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25875621

RESUMEN

The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution.


Asunto(s)
Proteínas Bacterianas/genética , Orden Génico , Genoma Bacteriano , Proteínas Ribosómicas/genética , Vibrio cholerae/patogenicidad , Animales , Drosophila melanogaster/microbiología , Dosificación de Gen , Sitios Genéticos , Vibrio cholerae/genética , Virulencia/genética
17.
Ann N Y Acad Sci ; 1354: 98-110, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25866265

RESUMEN

RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.


Asunto(s)
Oligorribonucleótidos Antisentido/metabolismo , ARN Bacteriano/metabolismo , ARN Catalítico/metabolismo , Ribonucleasa P/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/prevención & control , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Oligorribonucleótidos Antisentido/genética , ARN Bacteriano/química , ARN Bacteriano/genética
18.
Curr Opin Microbiol ; 22: 120-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25460805

RESUMEN

A minority of bacterial species has been found to carry a genome divided among several chromosomes. Among these, all Vibrio species harbor a genome split into two chromosomes of uneven size, with distinctive replication origins whose replication firing involves common and specific factors. Most of our current knowledge on replication and segregation in multi-chromosome bacteria has come from the study of Vibrio cholerae, which is now the model organism for this field. It has been firmly established that replication of the two V. cholerae chromosomes is temporally regulated and coupled to the cell cycle, but the mediators of these processes are as yet mostly unknown. The two chromosomes are also organized along different patterns within the cell and occupy different subcellular domains. The selective advantages provided by this partitioning into two replicons are still unclear and are a key motivation for these studies.


Asunto(s)
Genoma Bacteriano , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Ciclo Celular/fisiología , Segregación Cromosómica , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Replicación del ADN , Origen de Réplica
19.
Mol Microbiol ; 91(4): 665-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24308271

RESUMEN

Dam methylates GATC sequences in γ-proteobacteria genomes, regulating several cellular functions including replication. In Vibrio cholerae, which has two chromosomes, Dam is essential for viability, owing to its role in chr2 replication initiation. In this study, we isolated spontaneous mutants of V. cholerae that were able to survive the deletion of dam. In these mutants, homologous recombination and chromosome dimer resolution are essential, unless DNA mismatch repair is inactivated. Furthermore, the initiator of chr2 replication, RctB, is no longer required. We show that, instead, replication of chr2 is insured by spontaneous fusion with chr1 and piggybacking its replication machinery. We report that natural fusion of chr1 and chr2 occurred by two distinct recombination pathways: homologous recombination between repeated IS elements and site-specific recombination between dif sites. Lastly, we observed a preferential fusion of the two chromosomes in their terminus of replication.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Recombinación Genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/deficiencia , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Vibrio cholerae/genética , Cromosomas Bacterianos , Replicación del ADN , Eliminación de Gen
20.
Antimicrob Agents Chemother ; 57(6): 2467-75, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23478955

RESUMEN

We studied a collection of 105 clinical enterobacteria with unusual phenotypes of quinolone susceptibility to analyze the occurrence of plasmid-mediated quinolone resistance (PMQR) and oqx genes and their implications for quinolone susceptibility. The oqxA and oqxB genes were found in 31/34 (91%) Klebsiella pneumoniae and 1/3 Klebsiella oxytoca isolates. However, the oqxA- and oqxB-harboring isolates lacking other known quinolone resistance determinants showed wide ranges of susceptibility to nalidixic acid and ciprofloxacin. Sixty of the 105 isolates (57%) harbored at least one PMQR gene [qnrB19, qnrB10, qnrB2, qnrB1, qnrS1, or aac(6')-Ib-cr)], belong to 8 enterobacterial species, and were disseminated throughout the country, and most of them were categorized as susceptible by the current clinical quinolone susceptibility breakpoints. We developed a disk diffusion-based method to improve the phenotypic detection of aac(6')-Ib-cr. The most common PMQR genes in our collection [qnrB19, qnrB10, and aac(6')-Ib-cr] were differentially distributed among enterobacterial species, and two different epidemiological settings were evident. First, the species associated with community-acquired infections (Salmonella spp. and Escherichia coli) mainly harbored qnrB19 (a unique PMQR gene) located in small ColE1-type plasmids that might constitute its natural reservoirs. qnrB19 was not associated with an extended-spectrum ß-lactamase phenotype. Second, the species associated with hospital-acquired infections (Enterobacter spp., Klebsiella spp., and Serratia marcescens) mainly harbored qnrB10 in ISCR1-containing class 1 integrons that may also have aac(6')-Ib-cr as a cassette within the variable region. These two PMQR genes were strongly associated with an extended-spectrum ß-lactamase phenotype. Therefore, this differential distribution of PMQR genes is strongly influenced by their linkage or lack of linkage to integrons.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae/efectos de los fármacos , Plásmidos/genética , Quinolonas/farmacología , Argentina , Proteínas Bacterianas/metabolismo , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología , Humanos , Integrones/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA