Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Food Chem Toxicol ; : 115019, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307344

RESUMEN

Recent reports have highlighted that beer labelled "gluten-free", crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39209203

RESUMEN

BACKGROUND AND AIMS: Development of novel treatments for celiac disease is dependent on precise tools to monitor changes in gluten-induced mucosal damage. Current histology measures are subjective and difficult to standardize. Biopsy proteome scoring is an objective alternative to histology which is based on robust changes in biological pathways that directly reflect gluten-induced mucosal damage. In this study, we aimed to evaluate biopsy proteome scoring as an effect measure in a clinical trial setting by measuring intestinal remodeling in response to oral gluten challenge. METHODS: We analyzed biopsies from a 14-day gluten challenge trial of treated celiac disease patients that consumed 3 g (n = 6) or 10 g (n = 7) gluten per day. Sections from individually embedded biopsies collected before and after challenge were processed for proteome scoring (n = 109) and measurement of villous height-to-crypt depth ratio (n = 58). Proteome scores were compared with histology, intraepithelial lymphocyte frequency and plasma interleukin-2. RESULTS: Change in proteome scores were significant for the group of patients who consumed 10 g gluten, but not for the group who consumed 3 g gluten. Altogether, 8 of 13 patients had changes in delta proteome scores above the cutoff. Proteome scores correlated with villous height-to-crypt depth ratios both at run-in and at day 15. Proteome scores at day 15 correlated with intraepithelial lymphocyte frequency and with plasma interleukin-2 levels measured 4 hours post-gluten intake. CONCLUSION: Biopsy proteome scoring is a simple and reliable measure of gluten-induced mucosal remodeling in response to 14-day oral gluten challenge. CLINICALTRIALS: gov, Number: NCT03409796.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38987013

RESUMEN

BACKGROUND & AIMS: This study aimed to determine the total prevalence of celiac disease (CeD), including undiagnosed cases, in a population-based study of adults screened for CeD. METHODS: The study used the fourth Trøndelag Health Study (HUNT4), conducted in 2017-2019, where 56,042 adult (aged >20 years) residents of Nord-Trøndelag County, Norway, participated. Serum samples from 54,505 participants were analyzed for anti-transglutaminase 2 IgA and IgG. Seropositive individuals were invited for a clinical assessment, including upper endoscopy with duodenal biopsies. Previously diagnosed and seronegative CeD cases were identified through linkage to hospital records and the Norwegian Patient Registry. RESULTS: The rate of CeD seropositivity was 2.0% (1107/54,505). Out of these, 724 individuals attended the clinical assessment. Additionally, the hospital records and registry identified individuals with a known CeD diagnosis, that were seronegative or without serology in HUNT4 or seropositive in HUNT4 but did not participate in the clinical assessment. In total, the study confirmed a new CeD diagnosis after participation in HUNT4 in 470 individuals and a known CeD diagnosis before participation in HUNT4 in 383 individuals. The total biopsy-confirmed prevalence of CeD was 1.5% (853/56,042), and the ratio of new, previously undiagnosed CeD cases (after HUNT4) to known, previously diagnosed CeD cases (before HUNT4) was 1.2:1 (470/383). CONCLUSIONS: The total prevalence of CeD in this population-based study of adults in Norway was high and many individuals were previously undiagnosed. Detection of CeD should be improved, because early diagnosis is crucial for effective management and prevention of complications.

4.
Nature ; 632(8024): 401-410, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048815

RESUMEN

In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.


Asunto(s)
Enfermedad Celíaca , Duodeno , Interleucina-7 , Mucosa Intestinal , Modelos Biológicos , Organoides , Humanos , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biopsia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Duodeno/inmunología , Duodeno/patología , Duodeno/metabolismo , Epítopos/inmunología , Glútenes/inmunología , Glútenes/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Interleucina-7/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Organoides/inmunología , Organoides/metabolismo , Organoides/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
J Autoimmun ; 146: 103241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754235

RESUMEN

Many antibody responses induced by infection, vaccination or autoimmunity show signs of convergence across individuals with epitope-dependent selection of particular variable region gene segments and complementarity determining region 3 properties. However, not much is known about the relationship between antigen-specific effector cells and antigen-specific precursors present in the naïve B-cell repertoire. Here, we sought to address this relationship in the context of celiac disease, where there is a stereotyped autoantibody response against the enzyme transglutaminase 2 (TG2). By generating TG2-specific monoclonal antibodies from both duodenal plasma cells and circulating naïve B cells, we demonstrate a discord between the naïve TG2-specific repertoire and the cells that are selected for autoantibody production. Hence, the naïve repertoire does not fully reflect the epitope preference and gene usage observed for memory B cells and plasma cells. Instead, distinct naïve B cells that target particular TG2 epitopes appear to be selectively activated at the expense of TG2-binding B cells targeting other epitopes.


Asunto(s)
Autoanticuerpos , Linfocitos B , Enfermedad Celíaca , Epítopos de Linfocito B , Proteínas de Unión al GTP , Activación de Linfocitos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Enfermedad Celíaca/inmunología , Humanos , Autoanticuerpos/inmunología , Transglutaminasas/inmunología , Epítopos de Linfocito B/inmunología , Proteínas de Unión al GTP/inmunología , Activación de Linfocitos/inmunología , Linfocitos B/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Femenino , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Masculino , Adulto , Duodeno/inmunología , Duodeno/patología
7.
Gastroenterology ; 167(1): 4-22, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670280

RESUMEN

Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.


Asunto(s)
Enfermedad Celíaca , Predisposición Genética a la Enfermedad , Glútenes , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/genética , Humanos , Glútenes/inmunología , Glútenes/efectos adversos , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología
8.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578826

RESUMEN

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Asunto(s)
Linfocitos B , Enfermedad Celíaca , Proteínas de Unión al GTP , Inmunoglobulina A , Células Plasmáticas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Humanos , Transglutaminasas/inmunología , Transglutaminasas/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina A/sangre , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Adulto , Masculino , Femenino , Persona de Mediana Edad , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Glútenes/inmunología
9.
Gastroenterology ; 167(2): 250-263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552723

RESUMEN

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedad Celíaca , Dieta Sin Gluten , Glútenes , Fenotipo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Glútenes/inmunología , Glútenes/administración & dosificación , Masculino , Femenino , Adulto , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antígenos HLA-DQ/inmunología , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Activación de Linfocitos , Transglutaminasas/inmunología , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Factores de Tiempo , Adulto Joven , Resultado del Tratamiento , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo
10.
Gastroenterology ; 167(3): 493-504.e10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38467384

RESUMEN

BACKGROUND & AIMS: Histologic evaluation of gut biopsies is a cornerstone for diagnosis and management of celiac disease (CeD). Despite its wide use, the method depends on proper biopsy orientation, and it suffers from interobserver variability. Biopsy proteome measurement reporting on the tissue state can be obtained by mass spectrometry analysis of formalin-fixed paraffin-embedded tissue. Here we aimed to transform biopsy proteome data into numerical scores that give observer-independent measures of mucosal remodeling in CeD. METHODS: A pipeline using glass-mounted formalin-fixed paraffin-embedded sections for mass spectrometry-based proteome analysis was established. Proteome data were converted to numerical scores using 2 complementary approaches: a rank-based enrichment score and a score based on machine learning using logistic regression. The 2 scoring approaches were compared with each other and with histology analyzing 18 patients with CeD with biopsies collected before and after treatment with a gluten-free diet as well as biopsies from patients with CeD with varying degree of remission (n = 22). Biopsies from individuals without CeD (n = 32) were also analyzed. RESULTS: The method yielded reliable proteome scoring of both unstained and H&E-stained glass-mounted sections. The scores of the 2 approaches were highly correlated, reflecting that both approaches pick up proteome changes in the same biological pathways. The proteome scores correlated with villus height-to-crypt depth ratio. Thus, the method is able to score biopsies with poor orientation. CONCLUSIONS: Biopsy proteome scores give reliable observer and orientation-independent measures of mucosal remodeling in CeD. The proteomic method can readily be implemented by nonexpert laboratories in parallel to histology assessment and easily scaled for clinical trial settings.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Mucosa Intestinal , Proteoma , Proteómica , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/diagnóstico , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Biopsia , Proteoma/análisis , Proteómica/métodos , Femenino , Masculino , Adulto , Aprendizaje Automático , Persona de Mediana Edad , Espectrometría de Masas , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Adhesión en Parafina , Reproducibilidad de los Resultados , Estudios de Casos y Controles
12.
Gut ; 73(5): 844-853, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38378252

RESUMEN

Serum antibodies to the autoantigen transglutaminase 2 (TG2) are increasingly harnessed to diagnose coeliac disease. Diagnostic guidelines for children give recommendation for a no-biopsy-based diagnosis through detection of high amounts of IgA anti-TG2 antibodies in serum with confirmation of positivity in a separate blood sample by characteristic autoantibody-staining of tissue. While measurement of IgA anti-TG2 also is important in the diagnostic workup of adults, the adult guidelines still mandate examination of gut biopsies. This requirement might well change in the future, as might the necessity for confirming autoantibody positivity by tissue staining. The key role of autoantibody serology for diagnosis of coeliac disease is paradoxical. Coeliac disease was considered, and still can be considered, a food intolerance disorder where autoantibodies at face value are out of place. The immunological mechanisms underlying the formation of autoantibodies in response to gluten exposure have been dissected. This review presents the current insights demonstrating that the autoantibodies in coeliac disease are intimately integrated in the maladapted immune response to gluten.


Asunto(s)
Enfermedad Celíaca , Hipersensibilidad a los Alimentos , Adulto , Niño , Humanos , Enfermedad Celíaca/patología , Transglutaminasas , Autoanticuerpos , Glútenes/efectos adversos , Inmunoglobulina A
13.
Nat Rev Gastroenterol Hepatol ; 21(5): 335-347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336920

RESUMEN

Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.


Asunto(s)
Enfermedad Celíaca , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/terapia , Humanos , Tolerancia Inmunológica/inmunología , Glútenes/inmunología , Glútenes/efectos adversos , Dieta Sin Gluten , Antígenos HLA-DQ/inmunología , Linfocitos T CD4-Positivos/inmunología
14.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135691

RESUMEN

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Asunto(s)
Enfermedad Celíaca , Glútenes , Ratones , Animales , Humanos , Conejos , Glútenes/química , Anticuerpos Neutralizantes , Antígenos HLA-DQ , Péptidos/química , Epítopos/química , Ratones Transgénicos
15.
Nat Commun ; 14(1): 6216, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798283

RESUMEN

Transglutaminase 3 (TG3), the autoantigen of dermatitis herpetiformis (DH), is a calcium dependent enzyme that targets glutamine residues in polypeptides for either transamidation or deamidation modifications. To become catalytically active TG3 requires proteolytic cleavage between the core domain and two C-terminal ß-barrels (C1C2). Here, we report four X-ray crystal structures representing inactive and active conformations of human TG3 in complex with a TG3-specific Fab fragment of a DH patient derived antibody. We demonstrate that cleaved TG3, upon binding of a substrate-mimicking inhibitor, undergoes a large conformational change as a ß-sheet in the catalytic core domain moves and C1C2 detaches. The unique enzyme-substrate conformation of TG3 without C1C2 is recognized by DH autoantibodies. The findings support a model where B-cell receptors of TG3-specific B cells bind and internalize TG3-gluten enzyme-substrate complexes thereby facilitating gluten-antigen presentation, T-cell help and autoantibody production.


Asunto(s)
Enfermedad Celíaca , Dermatitis Herpetiforme , Humanos , Autoanticuerpos , Transglutaminasas , Inmunoglobulina A/metabolismo , Glútenes
16.
Adv Sci (Weinh) ; 10(25): e2300401, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424036

RESUMEN

Dermatitis herpetiformis (DH) is an inflammatory skin disorder often considered as an extra intestinal manifestation of celiac disease (CeD). Hallmarks of CeD and DH are auto-antibodies to transglutaminase 2 (TG2) and transglutaminase 3 (TG3), respectively. DH patients have auto-antibodies reactive with both transglutaminase enzymes. Here it is reported that in DH both gut plasma cells and serum auto-antibodies are specific for either TG2 or TG3 with no TG2-TG3 cross reactivity. By generating monoclonal antibodies from TG3-specific duodenal plasma cells of DH patients, three conformational epitope groups are defined. Both TG2-specific and TG3-specific gut plasma cells have few immunoglobulin (Ig) mutations, and the two transglutaminase-reactive populations show distinct selection of certain heavy and light chain V-genes. Mass spectrometry analysis of TG3-specific serum IgA corroborates preferential usage of IGHV2-5 in combination with IGKV4-1. Collectively, these results demonstrate parallel induction of anti-TG2 and anti-TG3 auto-antibody responses involving separate B-cell populations in DH patients.


Asunto(s)
Enfermedad Celíaca , Dermatitis Herpetiforme , Humanos , Inmunoglobulina A , Células Plasmáticas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas
17.
PLoS One ; 18(6): e0287662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37368893

RESUMEN

BACKGROUND: Formation of complexes between transglutaminase 2 (TG2) and gluten can mechanistically explain why TG2 serves both as B-cell autoantigen and as an enzyme that creates deamidated gluten epitopes in coeliac disease (CeD). A model has been proposed where TG2 released from shed epithelial cells encounters high concentrations of dietary gluten peptides to form these TG2:gluten complexes. In this work we have characterised TG2 protein expression in gut epithelial cells in humans. METHODS: Western blot analysis, immunofluorescence staining and mass spectrometry in combination with laser capture microdissection to gain spatial resolution were used to characterise TG2 expression in the epithelial cell layer of healthy and coeliac disease affected duodenum. FINDINGS: TG2 is expressed in human duodenal epithelial cells, including cells in the apical region that are shed into the gut lumen. In untreated CeD the apical expression of TG2 is doubled. Enzymatically active TG2 is readily released from isolated human intestinal epithelial cells. CONCLUSION: Shed epithelial cells are a plausible source of pathogenic TG2 enzyme in CeD. Increased epithelial TG2 expression and increased epithelial shedding in active CeD may reinforce action of luminal TG2 in this condition.


Asunto(s)
Enfermedad Celíaca , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Autoanticuerpos , Células Epiteliales/metabolismo , Glútenes/metabolismo , Transglutaminasas/metabolismo
18.
Front Cell Neurosci ; 17: 1189709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362001

RESUMEN

The phenotypes of B lineage cells that produce oligoclonal IgG in multiple sclerosis have not been unequivocally determined. Here, we utilized single-cell RNA-seq data of intrathecal B lineage cells in combination with mass spectrometry of intrathecally synthesized IgG to identify its cellular source. We found that the intrathecally produced IgG matched a larger fraction of clonally expanded antibody-secreting cells compared to singletons. The IgG was traced back to two clonally related clusters of antibody-secreting cells, one comprising highly proliferating cells, and the other consisting of more differentiated cells expressing genes associated with immunoglobulin synthesis. These findings suggest some degree of heterogeneity among cells that produce oligoclonal IgG in multiple sclerosis.

19.
Cell Host Microbe ; 31(2): 213-227.e9, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36603588

RESUMEN

Diet and commensals can affect the development of autoimmune diseases like type 1 diabetes (T1D). However, whether dietary interventions are microbe-mediated was unclear. We found that a diet based on hydrolyzed casein (HC) as a protein source protects non-obese diabetic (NOD) mice in conventional and germ-free (GF) conditions via improvement in the physiology of insulin-producing cells to reduce autoimmune activation. The addition of gluten (a cereal protein complex associated with celiac disease) facilitates autoimmunity dependent on microbial proteolysis of gluten: T1D develops in GF animals monocolonized with Enterococcus faecalis harboring secreted gluten-digesting proteases but not in mice colonized with protease deficient bacteria. Gluten digestion by E. faecalis generates T cell-activating peptides and promotes innate immunity by enhancing macrophage reactivity to lipopolysaccharide (LPS). Gnotobiotic NOD Toll4-negative mice monocolonized with E. faecalis on an HC + gluten diet are resistant to T1D. These findings provide insights into strategies to develop dietary interventions to help protect humans against autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbiota , Ratones , Animales , Humanos , Diabetes Mellitus Tipo 1/prevención & control , Glútenes , Ratones Endogámicos NOD , Proteolisis , Dieta
20.
Sci Adv ; 9(4): eade5800, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696493

RESUMEN

CD4+ T cells specific for cereal gluten proteins are key players in celiac disease (CeD) pathogenesis. While several CeD-relevant gluten T cell epitopes have been identified, epitopes recognized by a substantial proportion of gluten-reactive T cells remain unknown. The identification of such CeD-driving gluten epitopes is important for the food industry and in clinical settings. Here, we have combined the knowledge of a distinct phenotype of gluten-reactive T cells and key features of known gluten epitopes for the discovery of unknown epitopes. We tested 42 wheat gluten-reactive T cell clones, isolated on the basis of their distinct phenotype and with no reactivity to known epitopes, against a panel of synthetic peptides bioinformatically identified from a wheat gluten protein database. We were able to assign reactivity to 10 T cell clones and identified a 9-nucleotide oligomer core region of five previously uncharacterized gliadin/glutenin epitopes. This work represents an advance in the effort to identify CeD-driving gluten epitopes.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/metabolismo , Epítopos de Linfocito T , Glútenes , Gliadina/genética , Gliadina/metabolismo , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA