Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Adv ; 10(1): eadj4686, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170783

RESUMEN

Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Animales , Ratones , Insulina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemia/complicaciones , Hipoglucemia/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Calgranulina B
2.
Front Endocrinol (Lausanne) ; 13: 971745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313762

RESUMEN

Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1ß, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rß) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Interleucina-18 , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad
3.
Mol Cell Endocrinol ; 541: 111503, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34763008

RESUMEN

Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity.


Asunto(s)
Conexinas/genética , Glucosa/efectos adversos , Factor 15 de Diferenciación de Crecimiento/fisiología , Células Secretoras de Insulina/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Conexinas/metabolismo , Citoprotección/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Glucosa/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína delta-6 de Union Comunicante
4.
Transl Res ; 227: 75-88, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711187

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disorder related to type 2 diabetes (T2D). The disease can evolve toward nonalcoholic steatohepatitis (NASH), a state of hepatic inflammation and fibrosis. There is presently no drug that effectively improves and/or prevents NAFLD/NASH/fibrosis. GLP-1 receptor agonists (GLP-1Ra) are effective in treating T2D. As with the endogenous gut incretins, GLP-1Ra potentiate glucose-induced insulin secretion. In addition, GLP-1Ra limit food intake and weight gain, additional beneficial properties in the context of obesity/insulin-resistance. Nevertheless, these pleiotropic effects of GLP-1Ra complicate the elucidation of their direct action on the liver. In the present study, we used the classical methionine-choline deficient (MCD) dietary model to investigate the potential direct hepatic actions of the GLP-1Ra liraglutide. A 4-week infusion of liraglutide (570 µg/kg/day) did not impact body weight, fat accretion or glycemic control in MCD-diet fed mice, confirming the suitability of this model for avoiding confounding factors. Liraglutide treatment did not prevent lipid deposition in the liver of MCD-fed mice but limited the accumulation of C16 and C24-ceramide/sphingomyelin species. In addition, liraglutide treatment alleviated hepatic inflammation (in particular accumulation of M1 pro-inflammatory macrophages) and initiation of fibrosis. Liraglutide also influenced the composition of gut microbiota induced by the MCD-diet. This included recovery of a normal Bacteroides proportion and, among the Erysipelotrichaceae family, a shift between Allobaculum and Turicibacter genera. In conclusion, liraglutide prevents accumulation of C16 and C24-ceramides/sphingomyelins species, inflammation and initiation of fibrosis in MCD-diet-fed mice liver, suggesting beneficial hepatic actions independent of weight loss and global hepatic steatosis.


Asunto(s)
Colina/administración & dosificación , Dieta , Receptor del Péptido 1 Similar al Glucagón/agonistas , Inflamación/prevención & control , Liraglutida/farmacología , Hígado/efectos de los fármacos , Metionina/administración & dosificación , Animales , Liraglutida/uso terapéutico , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
5.
Sci Rep ; 9(1): 16810, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728041

RESUMEN

Lipotoxicity is a key player in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive subtype of nonalcoholic fatty liver disease (NAFLD). In the present study, we combine histological, transcriptional and lipidomic approaches to dissociate common and specific alterations induced by two classical dietary NASH models (atherogenic (ATH) and methionine/choline deficient (MCD) diet) in C57BL/6J male mice. Despite a similar degree of steatosis, MCD-fed mice showed more pronounced liver damage and a worsened pro-inflammatory and pro-fibrogenic environment than ATH-fed mice. Regarding lipid metabolism, the ATH diet triggered hepatic counter regulatory mechanisms, while the MCD diet worsened liver lipid accumulation by a concomitant increase in lipid import and reduction in lipid export. Liver lipidomics revealed sphingolipid enrichment in both NASH models that was accompanied by an upregulation of the ceramide biosynthesis pathway and a significant rise in dihydroceramide levels. In contrast, the phospholipid composition was not substantially altered by the ATH diet, whereas the livers of MCD-fed mice presented a reduced phosphatidylcholine to phosphatidylethanolamine (PC/PE) ratio and a strong depletion in phospholipids containing the sum of 34-36 carbons in their fatty acid chains. Therefore, the assessment of liver damage at the histological and transcriptional level combined with a lipidomic analysis reveals sphingolipids as shared mediators in liver lipotoxicity and pathogenesis of NASH.


Asunto(s)
Aterosclerosis/metabolismo , Dieta/efectos adversos , Redes Reguladoras de Genes/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esfingolípidos/metabolismo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Colina/química , Dieta Aterogénica/efectos adversos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lipidómica , Masculino , Metionina/deficiencia , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfatidilcolinas/metabolismo
6.
Endocr Rev ; 39(6): 960-989, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124818

RESUMEN

Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.


Asunto(s)
Enfermedades de las Vías Biliares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hígado Graso/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/uso terapéutico , Neoplasias/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Humanos
7.
Am J Physiol Endocrinol Metab ; 315(5): E833-E847, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944388

RESUMEN

ß-Klotho (encoded by Klb) is an obligate coreceptor, mediating both fibroblast growth factor (FGF)15 and FGF21 signaling. Klb-/- mice are refractory to metabolic FGF15 and FGF21 action and exhibit derepressed (increased) bile acid (BA) synthesis. Here, we deeply phenotyped male Klb-/- mice on a pure C57BL/6J genetic background, fed a chow diet focusing on metabolic aspects. This aims to better understand the physiological consequences of concomitant FGF15 and FGF21 signaling deficiency, in particular on the gut-liver axis. Klb-/- mice present permanent growth restriction independent of adiposity and energy balance. Klb-/- mice also exhibit few changes in carbohydrate metabolism, combining normal gluco-tolerance, insulin sensitivity, and fasting response with increased gluconeogenic capacity and decreased glycogen mobilization. Livers of Klb-/- mice reveal pathologic features, including a proinflammatory status and initiation of fibrosis. These defects are associated to a massive shift in BA composition in the enterohepatic system and blood circulation featured by a large excess of microbiota-derived deoxycholic acid, classically known for its genotoxicity in the gastrointestinal tract. In conclusion, ß-Klotho is a gatekeeper of hepatic integrity through direct action (mediating FGF21 anti-inflammatory signaling) and indirect mechanisms (mediating FGF15 signaling that maintains BA level and composition).


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Peso Corporal/fisiología , Tracto Gastrointestinal/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Adiposidad/genética , Animales , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Gluconeogénesis/fisiología , Cuerpos Cetónicos/sangre , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Transducción de Señal/fisiología
8.
Thyroid ; 28(6): 780-798, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29742982

RESUMEN

BACKGROUND: The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. METHODS: Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. RESULTS: The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. CONCLUSIONS: Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.


Asunto(s)
Antioxidantes/metabolismo , Yodo/sangre , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Tiroglobulina/sangre , Glándula Tiroides/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Homeostasis , Humanos , Yoduros/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Regiones Promotoras Genéticas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Tiroglobulina/genética , Hormonas Tiroideas/metabolismo
9.
EMBO Mol Med ; 9(10): 1379-1397, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28754744

RESUMEN

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin-releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with ß-Klotho (KLB), the obligate co-receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH Genetic screening of 334 CHH patients identified seven heterozygous loss-of-function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Proteínas de la Membrana/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Células COS , Caenorhabditis elegans/genética , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hormona Liberadora de Gonadotropina/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
10.
JCI Insight ; 2(8)2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28422755

RESUMEN

ß-Klotho (encoded by Klb) is the obligate coreceptor mediating FGF21 and FGF15/19 signaling. Klb-/- mice are refractory to beneficial action of pharmacological FGF21 treatment including stimulation of glucose utilization and thermogenesis. Here, we investigated the energy homeostasis in Klb-/- mice on high-fat diet in order to better understand the consequences of abrogating both endogenous FGF15/19 and FGF21 signaling during caloric overload. Surprisingly, Klb-/- mice are resistant to diet-induced obesity (DIO) owing to enhanced energy expenditure and BAT activity. Klb-/- mice exhibited not only an increase but also a shift in bile acid (BA) composition featured by activation of the classical (neutral) BA synthesis pathway at the expense of the alternative (acidic) pathway. High hepatic production of cholic acid (CA) results in a large excess of microbiota-derived deoxycholic acid (DCA). DCA is specifically responsible for activating the TGR5 receptor that stimulates BAT thermogenic activity. In fact, combined gene deletion of Klb and Tgr5 or antibiotic treatment abrogating bacterial conversion of CA into DCA both abolish DIO resistance in Klb-/- mice. These results suggested that DIO resistance in Klb-/- mice is caused by high levels of DCA, signaling through the TGR5 receptor. These data also demonstrated that gut microbiota can regulate host thermogenesis via conversion of primary into secondary BA. Pharmacologic or nutritional approaches to selectively modulate BA composition may be a promising target for treating metabolic disorders.

11.
Endocrinology ; 157(10): 3800-3808, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27471776

RESUMEN

Type 1 diabetes (T1DM) results from destruction of most insulin-secreting pancreatic ß-cells. The persistence of ß-cells decades after the onset of the disease indicates that the resistance of individual cells to the autoimmune insult is heterogeneous and might depend on the metabolic status of a cell at a given moment. The aim of this study is to investigate whether activation of nicotinic acetylcholine receptors (nACh-Rs) could increase ß-cell resistance against the adverse environment prevailing at the onset of T1DM. Here, we show that nACh-R activation by nicotine and choline, 2 agonists of the receptor, decreases murine and human ß-cell apoptosis induced by proinflammatory cytokines known to be present in the islet environment at the onset of T1DM. The protective mechanism activated by nicotine and choline involves attenuation of mitochondrial outer membrane permeabilization via modulation of endoplasmic reticulum stress, of the activity of B-cell lymphoma 2 family proteins and cytoplasmic calcium levels. Local inflammation and endoplasmic reticulum stress being key determinants of ß-cell death in T1DM, we conclude that pharmacological activation of nACh-R could represent a valuable therapeutic option in the modulation of ß-cell death in T1DM.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Islotes Pancreáticos/efectos de los fármacos , Agonistas Nicotínicos/uso terapéutico , Animales , Calcio/metabolismo , Caspasa 3/metabolismo , Colina , Técnicas de Cultivo , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico , Femenino , Regulación de la Expresión Génica , Genes bcl-2 , Humanos , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Nicotina , Agonistas Nicotínicos/farmacología , Óxido Nítrico/metabolismo
12.
PLoS One ; 10(7): e0132136, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26244509

RESUMEN

Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Dietilhexil Ftalato/efectos adversos , Disruptores Endocrinos/efectos adversos , Plastificantes/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Embarazo , Especificidad de la Especie
13.
Bone ; 68: 100-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25088402

RESUMEN

Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.


Asunto(s)
Huesos/metabolismo , Dieta , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Tejido Adiposo Pardo/anatomía & histología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/anatomía & histología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adiposidad/efectos de los fármacos , Adiposidad/fisiología , Animales , Biomarcadores/metabolismo , Fenómenos Biomecánicos/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/fisiología , Huesos/efectos de los fármacos , Recuento de Células , Suplementos Dietéticos , Femenino , Fémur/anatomía & histología , Fémur/efectos de los fármacos , Fémur/fisiología , Aceites de Pescado/farmacología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Columna Vertebral/anatomía & histología , Columna Vertebral/efectos de los fármacos , Columna Vertebral/fisiología , Tibia/anatomía & histología , Tibia/efectos de los fármacos , Tibia/fisiología
14.
Mol Genet Metab ; 112(1): 64-72, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24685552

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and ß2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7ß2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7ß2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7ß2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7ß2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central ß2nAChR deficiency.


Asunto(s)
Tejido Adiposo/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Índice Glucémico , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Receptores Nicotínicos/genética
15.
Arch Immunol Ther Exp (Warsz) ; 62(2): 87-101, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24276790

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are membrane ligand-gated cation channels whose activation is triggered by the binding of the endogenous neurotransmitter acetylcholine or other biologic compounds including nicotine. Their roles in synaptic transmission in the central and peripheral nervous system as well as in the neuromuscular junction have been extensively studied. Recent implications of nAChRs in intracellular signaling and their detection in peripheral nonneural cells (including epithelial cells and immune cells) have renewed the interest for this class of ionotropic receptors. In the present review, we focus our attention on the potential use of nicotinic cholinergic signaling in the treatment of metabolic diseases (such as obesity and diabetes) in browsing functions of nAChRs in adipose tissue and pancreatic islet biology. In fact, different nAChR subunits can be detected in these metabolic tissues, as well as in immune cells interacting with them. Various rodent models of obesity and diabetes benefit from stimulation of the nicotinic cholinergic pathway, whereas mice deficient for some nAChRs, in particular the α7 nAChR subunit, harbor a worsened metabolic phenotype. In contrast to potential therapeutic applications in metabolic diseases, an overstimulation of this signaling pathway during the early stage of development (typically through nicotine exposure during fetal life) presents deleterious consequences on ontogeny and functionality of adipose tissue and the endocrine pancreas which persist throughout life.


Asunto(s)
Tejido Adiposo/fisiología , Diabetes Mellitus/metabolismo , Islotes Pancreáticos/fisiología , Obesidad/metabolismo , Receptores Colinérgicos/metabolismo , Acetilcolina/metabolismo , Animales , Diabetes Mellitus/terapia , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Nicotina/metabolismo , Obesidad/terapia , Transducción de Señal
16.
Pediatr Res ; 75(1-1): 51-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24213624

RESUMEN

BACKGROUND: Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown. METHODS: IUGR was induced through maternal dexamethasone infusion (100 µg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7. RESULTS: Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation. CONCLUSION: Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.


Asunto(s)
Encéfalo/efectos de los fármacos , Suplementos Dietéticos , Crecimiento/efectos de los fármacos , Lactoferrina/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Dexametasona/administración & dosificación , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/prevención & control , Expresión Génica/efectos de los fármacos , Lactancia , Lactoferrina/farmacología , Reacción en Cadena de la Polimerasa , Embarazo , Ratas , Aumento de Peso/efectos de los fármacos
17.
Pediatr Res ; 75(3): 415-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346113

RESUMEN

BACKGROUND: Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. METHODS: Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. RESULTS: MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. CONCLUSION: This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.


Asunto(s)
Biomarcadores/metabolismo , Encefalitis/diagnóstico , Leucoencefalopatías/diagnóstico , Animales , Imagen de Difusión Tensora , Humanos , Inmunohistoquímica , Recien Nacido Prematuro , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Ácido Láctico/metabolismo , Lipopolisacáridos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
18.
Ann Clin Transl Neurol ; 1(12): 955-67, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25574471

RESUMEN

OBJECTIVE: Lactoferrin (Lf) is an iron-binding glycoprotein secreted in maternal milk presenting anti-inflammatory and antioxidant properties. It shows efficient absorption into the brain from nutritional source. Brain injury frequently resulting from cerebral hypoxia-ischemia (HI) has a high incidence in premature infants with ensuing neurodevelopmental disabilities. We investigated the neuroprotective effect of maternal nutritional supplementation with Lf during lactation in a rat model of preterm HI brain injury using magnetic resonance imaging (MRI), brain gene, and protein expression. METHODS: Moderate brain HI was induced using unilateral common carotid artery occlusion combined with hypoxia (6%, 30 min) in the postnatal day 3 (P3) rat brain (24-28 weeks human equivalent). High-field multimodal MRI techniques were used to investigate the effect of maternal Lf supplementation through lactation. Expression of cytokine coding genes (TNF-α and IL-6), the prosurvival/antiapoptotic AKT protein and caspase-3 activation were also analyzed in the acute phase after HI. RESULTS: MRI analysis demonstrated reduced cortical injury in Lf rats few hours post-HI and in long-term outcome (P25). Lf reduced HI-induced modifications of the cortical metabolism and altered white matter microstructure was recovered in Lf-supplemented rats at P25. Lf supplementation significantly decreased brain TNF-α and IL-6 gene transcription, increased phosphorylated AKT levels and reduced activation of caspase-3 at 24 h post-injury. INTERPRETATION: Lf given through lactation to rat pups with cerebral HI injury shows neuroprotective effects on brain metabolism, and cerebral gray and white matter recovery. This nutritional intervention may be of high interest for the clinical field of preterm brain neuroprotection.

19.
J Clin Invest ; 123(12): 5052-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24270419

RESUMEN

Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.


Asunto(s)
Anomalías Cardiovasculares/etiología , Metilación de ADN , Endotelio Vascular/fisiopatología , Fertilización In Vitro/efectos adversos , Hipertensión/etiología , Longevidad , Animales , Aorta/enzimología , Butiratos/farmacología , Butiratos/uso terapéutico , Anomalías Cardiovasculares/embriología , Dieta Aterogénica , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Endotelio Vascular/embriología , Femenino , Fertilización In Vitro/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Hipertensión/embriología , Hipertensión/fisiopatología , Masculino , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/fisiología , Inducción de la Ovulación/efectos adversos , Regiones Promotoras Genéticas , Resistencia Vascular/fisiología , Vasodilatación/fisiología
20.
PLoS One ; 8(9): e73452, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039946

RESUMEN

The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin) measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3) ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3), known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF) and thyrotropin-releasing hormone (TRH).


Asunto(s)
Ingestión de Alimentos , Leptina/metabolismo , Obesidad/metabolismo , Animales , Hipotálamo/metabolismo , Masculino , Obesidad/genética , Obesidad/fisiopatología , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores de Leptina/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA