RESUMEN
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). The remyelination process requires the activation, migration and differentiation of oligodendrocyte progenitor cells (OPC) in demyelinated areas. The metabolic dysfunction in chronic demyelinating lesions impairs the activation of OPCs, the myelin debris clearance by microglia decreases with age, along with diminished secretion of factors promoting OPC differentiation. Conventional magnetic resonance imaging (MRI) sequences have limited ability to differentiate unmyelinated and remyelinated lesions. Advanced MRI sequences based on magnetization transfer ratio (MTR), myelin water fraction (MWF) and diffusion tensor imaging (DTI) have been used to evaluate remyelination in clinical trials. More recently, the q-space myelin map (qMM) has been used on experimental and exploratory clinical studies. The improvement of myelin-specific MRI sequences with high reliability and standardization among centers will allow a more accurate evaluation of new therapies to improve remyelination. These new remyelination promoting treatments alone or in combination with current options may reduce the risk of long-term disability in MS.
Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/terapia , Vaina de Mielina/patología , Reproducibilidad de los ResultadosRESUMEN
Crack-cocaine offers a higher risk of abuse than intranasal and intravenous use of cocaine. Yet, current treatments remain disappointing and our understanding of the mechanism of crack-cocaine neurotoxicity is still incomplete. Magnetic resonance images studies on brain changes of crack-cocaine addicts show divergent data. The present study investigated gray matter (GM) abnormalities in crack-cocaine dependents (n = 18) compared to healthy controls (n = 17). MRI data was analysed using FreeSurfer and voxel-based morphometry (VBM). FreeSurfer analysis showed that CD had decreased cortical thickness (CT) in the left inferior temporal cortex (lTC), left orbitofrontal cortex (lOFC) and left rostro frontal cortex (lRFC), enlargement in left inferior lateral ventricle, and smaller GM volume in right hippocampus and right ventral diencephalon. VBM analysis showed that CD had significantly decreased GM volume in left Putamen and left nucleus accumbens. Furthermore, we found a negative correlation between duration of crack-cocaine use and lTC CT. These results provide compelling evidence for GM abnormalities in CD and also suggest that duration of crack-cocaine use may be associated with CT alterations.