Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep ; 43(8): 114594, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116203

RESUMEN

Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.

2.
Cell Rep ; 42(11): 113412, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963016

RESUMEN

RNA-binding proteins (RBPs) are found at replication forks, but their direct interaction with DNA-embedded RNA species remains unexplored. Here, we report that p53-binding protein 1 (53BP1), involved in the DNA damage and replication stress response, is an RBP that directly interacts with Okazaki fragments in the absence of external stress. The recruitment of 53BP1 to nascent DNA shows susceptibility to in situ ribonuclease A treatment and is dependent on PRIM1, which synthesizes the RNA primer of Okazaki fragments. Conversely, depletion of FEN1, resulting in the accumulation of uncleaved RNA primers, increases 53BP1 levels at replication forks, suggesting that RNA primers contribute to the recruitment of 53BP1 at the lagging DNA strand. 53BP1 depletion induces an accumulation of S-phase poly(ADP-ribose), which constitutes a sensor of unligated Okazaki fragments. Collectively, our data indicate that 53BP1 is anchored at nascent DNA through its RNA-binding activity, highlighting the role of an RNA-protein interaction at replication forks.


Asunto(s)
Replicación del ADN , ADN , Replicación del ADN/genética , ADN/metabolismo , ARN/genética , ARN/metabolismo
3.
EMBO Mol Med ; 15(12): e17836, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37766669

RESUMEN

The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Propionatos/farmacología , Propionatos/uso terapéutico , Ratones Desnudos , Línea Celular Tumoral , Pulmón/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
4.
Cell Mol Life Sci ; 79(6): 339, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661926

RESUMEN

The ataxia telangiectasia mutated and Rad3-related (ATR)-CHK1 pathway is the major signalling cascade activated in response to DNA replication stress. This pathway is associated with the core of the DNA replication machinery comprising CDC45, the replicative MCM2-7 hexamer, GINS (altogether forming the CMG complex), primase-polymerase (POLε, -α, and -δ) complex, and additional fork protection factors such as AND-1, CLASPIN (CLSPN), and TIMELESS/TIPIN. In this study, we report that functional protein kinase CK2α is critical for preserving replisome integrity and for mounting S-phase checkpoint signalling. We find that CDC45, CLSPN and MCM7 are novel CK2α interacting partners and these interactions are particularly important for maintenance of stable MCM7-CDC45, ATRIP-ATR-MCM7, and ATR-CLSPN protein complexes. Consistently, cells depleted of CK2α and treated with hydroxyurea display compromised replisome integrity, reduced chromatin binding of checkpoint mediator CLSPN, attenuated ATR-mediated S-phase checkpoint and delayed recovery of stalled forks. In further support of this, differential gene expression analysis by RNA-sequencing revealed that down-regulation of CK2α accompanies global shutdown of genes that are implicated in the S-phase checkpoint. These findings add to our understanding of the molecular mechanisms involved in DNA replication by showing that the protein kinase CK2α is essential for maintaining the stability of the replisome machinery and for optimizing ATR-CHK1 signalling activation upon replication stress.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo
5.
Genes (Basel) ; 12(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34946909

RESUMEN

Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Recombinación Homóloga , Animales , Humanos
6.
Dev Cell ; 56(4): 461-477.e7, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33621493

RESUMEN

Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.


Asunto(s)
Replicación del ADN , Genoma Humano , Metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/metabolismo , Modelos Biológicos , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Polimerizacion , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Nature ; 587(7833): 297-302, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087936

RESUMEN

Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication1-4. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes5,6. Here we show that, for daughter cells to sustain error-free DNA replication, their mother cells build up a nuclear pool of MCMs both by recycling chromatin-bound (parental) MCMs and by synthesizing new (nascent) MCMs. Although all MCMs can form pre-RCs, it is the parental pool that is inherently stable and preferentially matures into CMGs. By contrast, nascent MCM3-7 (but not MCM2) undergo rapid proteolysis in the cytoplasm, and their stabilization and nuclear translocation require interaction with minichromosome-maintenance complex-binding protein (MCMBP), a distant MCM paralogue7,8. By chaperoning nascent MCMs, MCMBP safeguards replicating genomes by increasing chromatin coverage with pre-RCs that do not participate on replication origins but adjust the pace of replisome movement to minimize errors during DNA replication. Consequently, although the paucity of pre-RCs in MCMBP-deficient cells does not alter DNA synthesis overall, it increases the speed and asymmetry of individual replisomes, which leads to DNA damage. The surplus of MCMs therefore increases the robustness of genome duplication by restraining the speed at which eukaryotic cells replicate their DNA. Alterations in physiological fork speed might thus explain why even a minor reduction in MCM levels destabilizes the genome and predisposes to increased incidence of tumour formation.


Asunto(s)
Replicación del ADN/genética , Genoma Humano/genética , Proteínas de Mantenimiento de Minicromosoma/biosíntesis , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Daño del ADN , Humanos , Proteínas de Mantenimiento de Minicromosoma/análisis , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estabilidad Proteica , Transporte de Proteínas
9.
Cell Rep ; 30(7): 2416-2429.e7, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075739

RESUMEN

It has been long assumed that normally leading strand synthesis must proceed coordinated with the lagging strand to prevent strand uncoupling and the pathological accumulation of single-stranded DNA (ssDNA) in the cell, a dogma recently challenged by in vitro studies in prokaryotes. Here, we report that human DNA polymerases can function independently at each strand in vivo and that the resulting strand uncoupling is supported physiologically by a cellular tolerance to ssDNA. Active forks rapidly accumulate ssDNA at the lagging strand when POLA1 is inhibited without triggering a stress response, despite ssDNA formation being considered a hallmark of replication stress. Acute POLA1 inhibition causes a lethal RPA exhaustion, but cells can duplicate their DNA with limited POLA1 activity and exacerbated strand uncoupling as long as RPA molecules suffice to protect the elevated ssDNA. Although robust, this uncoupled mode of DNA replication is also an in-built weakness that can be targeted for cancer treatment.


Asunto(s)
Replicación del ADN/genética , ADN de Cadena Simple/genética , Unión Proteica/genética , Humanos
10.
Cell Rep ; 29(3): 551-559.e4, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618626

RESUMEN

ATR kinase-mediated replication checkpoint is vital for genome maintenance following replication stress. Previously, we showed that XRCC2-RAD51D (DX2) sub-complex of RAD51 paralogs restrains active DNA synthesis during dNTP alterations, in a manner dependent on ATR-mediated phosphorylation of XRCC2. Here, we find that unrestrained fork progression in XRCC2 deficiency and phosphorylation defect causes replication-associated errors, subsequently resulting in genome-wide double-strand breaks (DSBs) and early activation of ATM signaling. Cells defective in XRCC2 phosphorylation exhibit ATM/ATR-mediated early activation of XRCC3 during perturbed replication, which facilitates recombination-mediated repair of the post-replicative DNA damage and thereby promotes cell viability. Collectively, our findings identify collaborative roles of RAD51 paralog complexes during replication stress and reveal their differential regulation by ATR signaling to promote cell survival and genome integrity.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Replicación del ADN , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Hidroxiurea/farmacología , Morfolinas/farmacología , Mutagénesis Sitio-Dirigida , Fosforilación , Pironas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Transducción de Señal
12.
Nat Cell Biol ; 21(4): 487-497, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804506

RESUMEN

Failure to complete DNA replication is a stochastic by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs). The fate of such cells remains unknown. Here, we show that the formation of 53BP1-NBs interrupts the chain of iterative damage intrinsically embedded in UR-DNA. Unlike clastogen-induced 53BP1 foci that are repaired throughout interphase, 53BP1-NBs restrain replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. The absence or malfunction of 53BP1-NBs causes premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination. Thus, through adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enable the completion of genome duplication of inherited UR-DNA and prevent the conversion of stochastic under-replications into genome instability.


Asunto(s)
Estructuras del Núcleo Celular/fisiología , Daño del ADN , Momento de Replicación del ADN , Proteína 1 de Unión al Supresor Tumoral P53/fisiología , Línea Celular , Segregación Cromosómica , Reparación del ADN , Replicación del ADN , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Fase S/genética , Proteínas de Unión a Telómeros/fisiología
13.
Cell Rep ; 25(12): 3273-3282.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566856

RESUMEN

RAD51 paralogs are essential for maintenance of genomic integrity through protection of stalled replication forks and homology-directed repair (HDR) of double-strand breaks. Here, we find that a subset of RAD51 paralogs, XRCC2 (FANCU) and its binding partner RAD51D, restrain active DNA synthesis during dinucleotide triphosphate (dNTP) alterations in a manner independent of HDR. The absence of XRCC2 is associated with increased levels of RRM2, the regulatory subunit of ribonucleotide reductase (RNR), and concomitantly high nucleotide pools, leading to unrestrained fork progression and accumulation of DNA damage during dNTP alterations. Mechanistically, this function is independent of redox signaling and RAD51-mediated fork reversal and is regulated by ataxia-telangiectasia and Rad3-related (ATR) signaling through phosphorylation of XRCC2 (Ser247). Together, these findings identify roles of RAD51 paralogs in the control of replication fork progression and maintenance of genome stability during nucleotide pool alterations.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Nucleótidos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , ADN/biosíntesis , Humanos , Cinética , Modelos Biológicos , Oxidación-Reducción , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Ribonucleótido Reductasas/metabolismo , Transducción de Señal , Estrés Fisiológico
14.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656893

RESUMEN

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Proteínas Mad2/antagonistas & inhibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Science ; 358(6364): 797-802, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123070

RESUMEN

DNA replication requires coordination between replication fork progression and deoxynucleotide triphosphate (dNTP)-generating metabolic pathways. We find that perturbation of ribonucleotide reductase (RNR) in humans elevates reactive oxygen species (ROS) that are detected by peroxiredoxin 2 (PRDX2). In the oligomeric state, PRDX2 forms a replisome-associated ROS sensor, which binds the fork accelerator TIMELESS when exposed to low levels of ROS. Elevated ROS levels generated by RNR attenuation disrupt oligomerized PRDX2 to smaller subunits, whose dissociation from chromatin enforces the displacement of TIMELESS from the replisome. This process instantly slows replication fork progression, which mitigates pathological consequences of replication stress. Thus, redox signaling couples fluctuations of dNTP biogenesis with replisome activity to reduce stress during genome duplication. We propose that cancer cells exploit this pathway to increase their adaptability to adverse metabolic conditions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribonucleótido Reductasas/metabolismo , Adaptación Biológica , Cromatina/metabolismo , Desoxirribonucleótidos/metabolismo , Humanos , Redes y Vías Metabólicas , Oxidación-Reducción , Transducción de Señal
16.
Nucleic Acids Res ; 45(15): 8886-8900, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911102

RESUMEN

The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.


Asunto(s)
Proteína BRCA1/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cromátides/química , ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Reparación del ADN por Recombinación , Animales , Proteína BRCA1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células CHO , Línea Celular Tumoral , Cromátides/metabolismo , Cricetulus , ADN/metabolismo , Roturas del ADN de Doble Cadena , Desoxirribonucleasas de Localización Especificada Tipo II/farmacología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación de la Expresión Génica , Recombinación Homóloga/efectos de los fármacos , Humanos , Mutación , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/farmacología
17.
Nat Struct Mol Biol ; 23(8): 714-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27348077

RESUMEN

Repair of DNA double-strand breaks (DSBs) in mammals is coordinated by the ubiquitin-dependent accumulation of 53BP1 at DSB-flanking chromatin. Owing to its ability to limit DNA-end processing, 53BP1 is thought to promote nonhomologous end-joining (NHEJ) and to suppress homology-directed repair (HDR). Here, we show that silencing 53BP1 or exhausting its capacity to bind damaged chromatin changes limited DSB resection to hyper-resection and results in a switch from error-free gene conversion by RAD51 to mutagenic single-strand annealing by RAD52. Thus, rather than suppressing HDR, 53BP1 fosters its fidelity. These findings illuminate causes and consequences of synthetic viability acquired through 53BP1 silencing in cells lacking the BRCA1 tumor suppressor. We show that such cells survive DSB assaults at the cost of increasing reliance on RAD52-mediated HDR, which may fuel genome instability. However, our findings suggest that when challenged by DSBs, BRCA1- and 53BP1-deficient cells may become hypersensitive to, and be eliminated by, RAD52 inhibition.


Asunto(s)
Proteína 1 de Unión al Supresor Tumoral P53/fisiología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Transporte de Proteínas , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
18.
Carcinogenesis ; 37(2): 145-156, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678223

RESUMEN

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacocinética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Reactivos de Enlaces Cruzados/farmacología , Aductos de ADN/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Neoplasias/genética
19.
Nucleic Acids Res ; 43(20): 9835-55, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26354865

RESUMEN

Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/fisiología , ADN/metabolismo , Secuencias de Aminoácidos , Animales , Neoplasias de la Mama/genética , Línea Celular , Cromatina/metabolismo , Sitios Frágiles del Cromosoma , Cricetinae , Cricetulus , Roturas del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Células HeLa , Humanos , Complejos Multienzimáticos , Mutación , Neoplasias Ováricas/genética , Fase S
20.
PLoS One ; 10(6): e0127558, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083398

RESUMEN

Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 µM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.


Asunto(s)
Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Antimetabolitos Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , MAP Quinasa Quinasa 4/genética , Metotrexato/farmacología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial , Metotrexato/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Cultivo Primario de Células , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA