Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
CrystEngComm ; 25(32): 4503-4510, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014394

RESUMEN

Self-assembling peptides are of huge interest for biological, medical and nanotechnological applications. The enormous chemical variety that is available from the 20 amino acids offers potentially unlimited peptide sequences, but it is currently an issue to predict their supramolecular behavior in a reliable and cheap way. Herein we report a computational method to screen and forecast the aqueous self-assembly propensity of amyloidogenic pentapeptides. This method was found also as an interesting tool to predict peptide crystallinity, which may be of interest for the development of peptide based drugs.

2.
APL Bioeng ; 7(3): 036112, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37692376

RESUMEN

Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.

3.
Biomed Mater ; 17(5)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35944550

RESUMEN

To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a bio-hybrid semi-degradable material composed of silk fibroin (SF) and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (Øin= 1.5 mm) via electrospinning. Bio-hybrid grafts werein vitrocharacterized in terms of morphology and mechanical behaviour, and compared to similar grafts of pure SF. Similarly, two native vessels from a rodent model (abdominal aorta and vena cava) were harvested and characterized. Preliminary implants were performed on Lewis rats to confirm the suitability of Silkothane® grafts for small-calibre applications, specifically as aortic insertion and femoral shunt. The manufacturing process generated pliable grafts consisting of a randomized fibrous mesh and exhibiting similar geometrical features to rat aortas. Both Silkothane® and pure SF grafts showed radial compliances in the range from 1.37 ± 0.86 to 1.88 ± 1.01% 10-2mmHg-1, lower than that of native vessels. The Silkothane® small-calibre devices were also implanted in rats demonstrating to be adequate for vascular applications; all the treated rats survived the surgery for three months after implantation, and 16 rats out of 17 (94%) still showed blood flow inside the graft at sacrifice. The obtained results lay the basis for a deeper investigation of the interaction between the Silkothane® graft and the implant site, which may deal with further analysis on the potentialities in terms of degradability and tissue formation, on longer time-points.


Asunto(s)
Fibroínas , Injerto Vascular , Animales , Prótesis Vascular , Poliuretanos , Ratas , Ratas Endogámicas Lew
4.
Small ; 18(32): e2200807, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723172

RESUMEN

Bromination is herein exploited to promote the emergence of elastic behavior in a short peptide-SDSYGAP-derived from resilin, a rubber-like protein exerting its role in the jumping and flight systems of insects. Elastic and resilient hydrogels are obtained, which also show self-healing behavior, thanks to the promoted non-covalent interactions that limit deformations and contribute to the structural recovery of the peptide-based hydrogel. In particular, halogen bonds may stabilize the ß-sheet organization working as non-covalent cross-links between nearby peptide strands. Importantly, the unmodified peptide (i.e., wild type) does not show such properties. Thus, SDSY(3,5-Br)GAP is a novel minimalist peptide elastomer.


Asunto(s)
Drosophila melanogaster , Halogenación , Animales , Drosophila melanogaster/metabolismo , Elasticidad , Hidrogeles , Proteínas de Insectos , Péptidos/química
5.
Polymers (Basel) ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295115

RESUMEN

Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.

6.
Theranostics ; 10(6): 2597-2611, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194822

RESUMEN

Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-ß-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-ß-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.


Asunto(s)
Puente de Arteria Coronaria , Miocitos del Músculo Liso , Vena Safena , Trombospondina 1/fisiología , Remodelación Vascular , Adulto , Anciano , Animales , Proliferación Celular , Células Cultivadas , Femenino , Oclusión de Injerto Vascular/fisiopatología , Humanos , Masculino , Fenómenos Mecánicos , Persona de Mediana Edad , Miocitos del Músculo Liso/citología , Vena Safena/citología , Porcinos
7.
Methods Appl Fluoresc ; 8(2): 025007, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32092706

RESUMEN

Despite intracellular molecular dynamics being fundamental to understand pathological, biomechanical or biochemical events, several processes are still not clear because of the difficulty of monitoring and measuring these phenomena. To engineer an effective fluorescent tool useful to improve protein intracellular tracking studies, we fused a supernegative green fluorescent protein, (-30)GFP, to a myogenic transcription factor, MyoD. The (-30)GFP-MyoD was able to pass the plasma membrane when complexed with cationic lipids. Fluorescence confocal microscopy showed the protein delivery in just 3 hours with high levels of protein transduction efficiency. Confocal acquisitions also confirmed the maintenance of the MyoD nuclear localization. To examine how the supernegative GFP influenced MyoD activity, we did gene expression analyses, which showed an inhibitory effect of (-30)GFP on transcription factor function. This negative effect was possibly due to a charge-driven interference mechanism, as suggested by further investigations by molecular dynamics simulations. Summarizing these results, despite the functional limitations related to the charge structural characteristics that specifically affected MyoD function, we found (-30)GFP is a suitable fluorescent label for improving protein intracellular tracking studies, such as nucleocytoplasmic transport in mechanotransduction.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Simulación de Dinámica Molecular/normas , Humanos
8.
Mol Biol Rep ; 46(4): 4483-4500, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31183678

RESUMEN

One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.


Asunto(s)
Fosfatos de Calcio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Animales , Huesos/química , Diferenciación Celular , Células Cultivadas , Colágeno/química , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Nanopartículas , Osteogénesis/efectos de los fármacos , Medicina Regenerativa , Porcinos , Andamios del Tejido/química
9.
Cell Rep ; 25(13): 3858-3868.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590054

RESUMEN

The integration of vascular structures into in vitro cultured tissues provides realistic models of complex tissue-vascular interactions. Despite the incidence and impact of muscle-wasting disorders, advanced in vitro systems are still far from recapitulating the environmental complexity of skeletal muscle. Our model comprises differentiated human muscle fibers enveloped by a sheath of human muscle-derived fibroblasts and supported by a vascular network with mural-like cells. Here, we demonstrate the induction of muscle-specific endothelium and the self-organization of endomysial muscle fibroblasts mediated by endothelial cells. We use this model to mimic the fibrotic environment characterizing muscular dystrophies and to highlight key signatures of fibrosis that are neglected or underestimated in traditional 2D monocultures. Overall, this vascularized meso-scale cellular construct finely recapitulates the human skeletal muscle environment and provides an advanced solution for in vitro studies of muscle physiology and pathology.


Asunto(s)
Endotelio/patología , Modelos Biológicos , Músculo Esquelético/patología , Ingeniería de Tejidos/métodos , Adulto , Animales , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Microvasos/patología , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/irrigación sanguínea , Distrofia Muscular de Duchenne/patología , Neovascularización Fisiológica , Especificidad de Órganos , Fenotipo , Porcinos
10.
PLoS One ; 13(9): e0204045, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30265729

RESUMEN

Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30-40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.


Asunto(s)
Venas/metabolismo , Venas/trasplante , Versicanos/metabolismo , Adventicia/metabolismo , Antígenos CD34/metabolismo , Presión Arterial/fisiología , Células Cultivadas , Humanos , Ácido Hialurónico/metabolismo , Inmunohistoquímica , Miocitos del Músculo Liso/metabolismo , Vena Safena/citología , Vena Safena/metabolismo , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos , Túnica Íntima/citología , Túnica Íntima/metabolismo , Túnica Media/citología , Túnica Media/metabolismo , Vasa Vasorum/citología , Vasa Vasorum/metabolismo , Venas/citología , Versicanos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA