Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Br J Anaesth ; 130(3): 331-342, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36609060

RESUMEN

BACKGROUND: Acute pain after surgery is common and often leads to chronic post-surgical pain, but neither treatment nor prevention is currently sufficient. We hypothesised that specific protein networks (protein-protein interactions) are relevant for pain after surgery in humans and mice. METHODS: Standardised surgical incisions were performed in male human volunteers and male mice. Quantitative and qualitative sensory phenotyping were combined with unbiased quantitative mass spectrometry-based proteomics and protein network theory. The primary outcomes were skin protein signature changes in humans and phenotype-specific protein-protein interaction analysis 24 h after incision. Secondary outcomes were interspecies comparison of protein regulation as well as protein-protein interactions after incision and validation of selected proteins in human skin by immunofluorescence. RESULTS: Skin biopsies in 21 human volunteers revealed 119/1569 regulated proteins 24 h after incision. Protein-protein interaction analysis delineated remarkable differences between subjects with small (low responders, n=12) and large incision-related hyperalgesic areas (high responders, n=7), a phenotype most predictive of developing chronic post-surgical pain. Whereas low responders predominantly showed an anti-inflammatory protein signature, high responders exhibited signatures associated with a distinct proteolytic environment and persistent inflammation. Compared to humans, skin biopsies in mice habored even more regulated proteins (435/1871) 24 h after incision with limited overlap between species as assessed by proteome dynamics and PPI. Immunohistochemistry confirmed the expression of high priority candidates in human skin biopsies. CONCLUSIONS: Proteome profiling of human skin after incision revealed protein-protein interactions correlated with pain and hyperalgesia, which may be of potential significance for preventing chronic post-surgical pain. Importantly, protein-protein interactions were differentially modulated in mice compared to humans opening new avenues for successful translational research.


Asunto(s)
Proteoma , Proteómica , Humanos , Masculino , Ratones , Animales , Hiperalgesia/prevención & control , Piel/metabolismo , Dolor Postoperatorio
2.
Front Pharmacol ; 13: 818690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250568

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side-effect of cancer therapies. So far, the development of CIPN cannot be prevented, neither can established CIPN be reverted, often leading to the cessation of necessary chemotherapy. Thus, there is an urgent need to explore the mechanistic basis of CIPN to facilitate its treatment. Here we used an integrated approach of quantitative proteome profiling and network analysis in a clinically relevant rat model of paclitaxel-induced peripheral neuropathy. We analysed lumbar rat DRG at two critical time points: (1) day 7, right after cessation of paclitaxel treatment, but prior to neuropathy development (pre-CIPN); (2) 4 weeks after paclitaxel initiation, when neuropathy has developed (peak-CIPN). In this way we identified a differential protein signature, which shows how changes in the proteome correlate with the development and maintenance of CIPN, respectively. Extensive biological pathway and network analysis reveals that, at pre-CIPN, regulated proteins are prominently implicated in mitochondrial (dys)function, immune signalling, neuronal damage/regeneration, and neuronal transcription. Orthogonal validation in an independent rat cohort confirmed the increase of ß-catenin (CTNNB1) at pre-CIPN. More importantly, detailed analysis of protein networks associated with ß-catenin highlights translationally relevant and potentially druggable targets. Overall, this study demonstrates the enormous value of combining animal behaviour with proteome and network analysis to provide unprecedented insights into the molecular basis of CIPN. In line with emerging approaches of network medicine our results highlight new avenues for developing improved therapeutic options aimed at preventing and treating CIPN.

3.
Pain ; 160(2): 508-527, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30335684

RESUMEN

Sensitization of the transient receptor potential ion channel vanilloid 1 (TRPV1) is critically involved in inflammatory pain. To date, manifold signaling cascades have been shown to converge onto TRPV1 and enhance its sensitization. However, many of them also play a role for nociceptive pain, which limits their utility as targets for therapeutic intervention. Here, we show that the vesicle transport through interaction with t-SNAREs homolog 1B (Vti1b) protein promotes TRPV1 sensitization upon inflammation in cell culture but leaves normal functioning of TRPV1 intact. Importantly, the effect of Vti1b can be recapitulated in vivo: Virus-mediated knockdown of Vti1b in sensory neurons attenuated thermal hypersensitivity during inflammatory pain without affecting mechanical hypersensitivity or capsaicin-induced nociceptive pain. Interestingly, TRPV1 and Vti1b are localized in close vicinity as indicated by proximity ligation assays and are likely to bind to each other, either directly or indirectly, as suggested by coimmunoprecipitations. Moreover, using a mass spectrometry-based quantitative interactomics approach, we show that Vti1b is less abundant in TRPV1 protein complexes during inflammatory conditions compared with controls. Alongside, we identify numerous novel and pain state-dependent binding partners of native TRPV1 in dorsal root ganglia. These data represent a unique resource on the dynamics of the TRPV1 interactome and facilitate mechanistic insights into TRPV1 regulation. We propose that inflammation-related differences in the TRPV1 interactome identified here could be exploited to specifically target inflammatory pain in the future.


Asunto(s)
Regulación de la Expresión Génica/genética , Hiperalgesia/genética , Dolor/metabolismo , Proteínas Qb-SNARE/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Capsaicina/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Ganglios Espinales/citología , Humanos , Hiperalgesia/fisiopatología , Inflamación/inducido químicamente , Inflamación/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dolor/etiología , Proteínas Qb-SNARE/genética , Interferencia de ARN/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Canales Catiónicos TRPV/genética
4.
Front Mol Neurosci ; 11: 259, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154697

RESUMEN

To obtain a thorough understanding of chronic pain, large-scale molecular mapping of the pain axis at the protein level is necessary, but has not yet been achieved. We applied quantitative proteome profiling to build a comprehensive protein compendium of three regions of the pain neuraxis in mice: the sciatic nerve (SN), the dorsal root ganglia (DRG), and the spinal cord (SC). Furthermore, extensive bioinformatics analysis enabled us to reveal unique protein subsets which are specifically enriched in the peripheral nervous system (PNS) and SC. The immense value of these datasets for the scientific community is highlighted by validation experiments, where we monitored protein network dynamics during neuropathic pain. Here, we resolved profound region-specific differences and distinct changes of PNS-enriched proteins under pathological conditions. Overall, we provide a unique and validated systems biology proteome resource (summarized in our online database painproteome.em.mpg.de), which facilitates mechanistic insights into somatosensory biology and chronic pain-a prerequisite for the identification of novel therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA