Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Comput Biol Med ; 171: 108183, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422959

RESUMEN

BACKGROUND: As one of the common subtypes of non-small lung cancer, lung squamous cell carcinoma (LUSC) patients with advanced stage have few choices of treatment strategies. Therefore, it is urgent to discover genes that are associated with the survival and efficacy of immunotherapies. METHOD: Differential gene expression analyses were conducted using TCGA LUSC bulk-sequencing and single-cell RNA-sequencing data. Prognostic genes were identified from the TCGA LUSC cohort. Protein expression validation and survival analyses were performed. Experiments were conducted to explore the underlying mechanisms. In addition, the correlation between gene expression and pathological response to adjuvant immunochemotherapy was also investigated. RESULTS: After a series of bioinformatic analyses, solute carrier family 2 member 1(SLC2A1), encoding glucose transporter-1 (GLUT1), was found to be differentially expressed between tumor and normal tissues. GLUT1 was subsequently identified as an independent prognostic factor for LUSC. GSEA analysis revealed the glycolysis metabolism pathway of KEGG enriched in SLC2A1high tumor tissues. LASSO analyses revealed that tumor tissues with high expression of SLC2A1 were associated with high levels of protein lactylation. We found that SLC2A1 was preferentially expressed by SPP1+ macrophages in the tumor microenvironment, and the expression of SLC2A1 was associated with the abundance of SPP1+ macrophages. Immunofluorescence demonstrated GLUT1 and HIF1α colocalization in tumor-infiltrating macrophages. In vitro experiments showed HIF-1α-induced macrophage polarization under hypoxia, and GLUT1 inhibition blocked this polarization. In addition, SLC2A1 was negatively associated with the common immune checkpoint molecules, such as programmed cell death 1(PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte associated protein 4 (CTLA4) and lymphocyte activating 3 (LAG3), while showed a positive association with CD44. Finally, we observed that there was a significant correlation between pre-adjuvant-treatment GLUT1 expression and the pathological response. CONCLUSION: SLC2A1 expression was differentially upregulated in tumor tissues, and elevated GLUT1 expression was associated with worse survival and poor pathological response to adjuvant immunochemotherapy. Upregulation of GLUT1 promoted macrophage polarization into the M2 phenotype. The findings will contribute to guiding the treatment selection for LUSC patients and providing personalized immunotherapy strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Transportador de Glucosa de Tipo 1/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Biomarcadores , Inmunoterapia , Pulmón , Microambiente Tumoral
2.
Mol Med ; 30(1): 14, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254010

RESUMEN

BACKGROUND: N6-Methyladenosine (m6A) methylation is the most prevalent post-transcriptional modification in mRNA, and plays significant roles in various diseases. Nevertheless, the precise functions of m6A modification in the formation of ALI remain unclear. In this study we explore the transcriptome distribution of m6A methylation and its probable roles of in ALI. METHODS: Lipopolysaccharide (LPS) was utilized to establish an ALI mouse model. Real-time qPCR, Western blotting and m6A dot blot were utilized to assess m6A methylation level and the expression of m6A methylation enzymes. MeRIP-Seq and RNA-seq were utilized to explore differential m6A modifications and differentially expressed genes in ALI mice. The hub genes and enriched pathways were assessed by Real-time qPCR and Western blotting. RESULTS: Our findings showed that overall m6A methylation level was increased in ALI mice lung tissues, accompanied by lower levels of METTL3 and FTO. Notably, the protein expression of these methylases were different in various cells. There were 772 differently expressed m6A peaks in ALI as compared to the control group, with 316 being hypermethylated and 456 being hypomethylated. GO and KEGG analyses demonstrated these differentially methylated genes were associated with the calcium signaling pathway and cAMP signaling pathway. Furthermore, we identified 50 genes with distinct m6A peaks and mRNA expressions by combined analysis of MeRIP-Seq and RNA-Seq. KEGG analysis also demonstrated that these overlapped genes were closely associated with the calcium signaling pathway, cGMP-PKG signaling pathway, etc. Besides, Western blotting results demonstrated that the protein expression of Fibronectin leucine-rich transmembrane protein 3 (Flrt3) as well as the calcium signaling pathway and cGMP-PKG signaling pathway, increased significantly after ALI. CONCLUSIONS: m6A modification was paramount in the pathogenesis of ALI, and provided a foundation for the further investigation in the prevention and treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Adenina/análogos & derivados , Lipopolisacáridos , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Expresión Génica , GMP Cíclico , ARN Mensajero
3.
J Cancer ; 15(1): 218-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164276

RESUMEN

Histone H3-H4 chaperone anti-silencing function 1 (ASF1) plays an important role in the polymerization, transport, and modification of histones. However, the significance of ASF1B in lung adenocarcinoma (LUAD) is largely overlooked. We investigated the aberrant expression of ASF1B in LUAD and its potential link to patient survival using multiple databases. ASF1B-overexpressing and knockdown cell lines were constructed to explore its effects on the biological behavior of lung cancer cells. ssGSEA, TMB, TIDE and IMvigor210 cohort were used to explore and validate the association of ASF1B to tumor immunity. Our data suggested that ASF1B was overexpressed in LUAD, and was associated with poor prognosis. ASF1B promoted the proliferation, migration, and invasion of lung cancer cells by regulating the phosphorylation of AKT in vitro. ASF1B was associated with tumor immunity. In summary, ASF1B may promote malignant behavior of LUAD cells, and its overexpression correlates with worse prognosis and better immunotherapy effect.

4.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225395

RESUMEN

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Proteína Forkhead Box O3 , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Sirtuina 3 , Xantonas , Animales , Xantonas/farmacología , Xantonas/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Sirtuina 3/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O3/metabolismo , Masculino , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estreptozocina , Transducción de Señal/efectos de los fármacos , Transición Endotelial-Mesenquimatosa
5.
Curr Issues Mol Biol ; 45(12): 9868-9886, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132462

RESUMEN

Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway.

6.
Front Immunol ; 14: 1324021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162674

RESUMEN

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.


Asunto(s)
Trampas Extracelulares , Reacción a la Transfusión , Lesión Pulmonar Aguda Postransfusional , Humanos , Lesión Pulmonar Aguda Postransfusional/terapia , Lesión Pulmonar Aguda Postransfusional/patología , Células Endoteliales , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA