Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Total Environ ; 950: 175068, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094651

RESUMEN

Chengdu Plain Urban Agglomeration (CPUA) is one of the most serious areas suffering from ozone pollution in China. A comprehensive field observation focused on the ozone production rate and its sensitivity was conducted at CPUA in the summer of 2019. Six sampling sites were set and two ozone pollution episodes were recognized. The daily maximum 8-h average (MDA8) O3 concentration reached 137.9 ppbv in the urban sites during the ozone pollution episode. Peak concentration of O3 was closely related to intense solar radiation, high temperatures, and precursor emissions. The OH-HO2-RO2 radical chemistry and ozone production rate (P(O3)) were calculated using an observation-based model (OBM). The daily peak OH concentration varied in the range of 3-13 × 106 molecules cm-3, and peak HO2 and RO2 were in the range of 2-14 × 108 molecules cm-3 during ozone pollution episodes. During the ozone pollution episode, the average maximum of P(O3) in suburban sites (about 30 ppbv h-1.) was compared with urban sites, and the maximum of P(O3) was 18 ppbv h-1 in rural sites. The relative incremental reactivity (RIR) results demonstrate that it was a VOCs-limited regime in the central urban area of Chengdu, with NOx suppression effect in some regions. In the southern neighboring suburb of Chengdu, it was VOCs-limited as well. However, the northern suburban area was a transition region. In the remote rural areas of the southern CPUA, it was highly NOx-limited. Local ozone production driven by the photochemical process is crucial to the ozone pollution formation in CPUA. The geographically differentiated recognition of the ozone regime found by this study can help to tailor control strategies for local conditions and avoid the negative effects of a one-size-fits-all approach.

2.
Sci Total Environ ; 944: 173712, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38830412

RESUMEN

The sensitivity of tropospheric ozone (O3) to its precursors volatile organic compounds (VOCs) and nitrogen oxides (NOX) determines the emission reduction strategy for O3 mitigation. Due to the lack of comprehensive vertical measurements of VOCs, the vertical distribution of O3 sensitivity regimes has not been well understood. O3 precursor sensitivity determined by ground-level measurements has been generally used to guide O3 control strategy. Here, to precisely diagnose O3 sensitivity regimes at different heights in the planetary boundary layer (PBL), we developed a vertical measurement system based on an unmanned aerial vehicle platform to conduct comprehensive vertical measurements of VOCs, NOX and other relevant parameters. Our results suggest that the O3 precursor sensitivity shifts from a VOC-limited regime at the ground to a NOX-limited regime at upper layers, indicating that the ground-level O3 sensitivity cannot represent the situation of the whole PBL. We also found that the state-of-the-art photochemical model tends to underestimate oxygenated VOCs at upper layers, resulting in overestimation of the degree of VOCs-limited regime. Therefore, thorough vertical measurements of VOCs to accurately diagnose O3 precursor sensitivity is in urgent need for the development of effective O3 control strategies.

3.
Environ Sci Technol ; 58(20): 8815-8824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733566

RESUMEN

This study presents the measurement of photochemical precursors during the lockdown period from January 23, 2020, to March 14, 2020, in Chengdu in response to the coronavirus (COVID-19) pandemic. To derive the lockdown impact on air quality, the observations are compared to the equivalent periods in the last 2 years. An observation-based model is used to investigate the atmospheric oxidation capacity change during lockdown. OH, HO2, and RO2 concentrations are simulated, which are elevated by 42, 220, and 277%, respectively, during the lockdown period, mainly due to the reduction in nitrogen oxides (NOx). However, the radical turnover rates, i.e., OH oxidation rate L(OH) and local ozone production rate P(O3), which determine the secondary intermediates formation and O3 formation, only increase by 24 and 48%, respectively. Therefore, the oxidation capacity increases slightly during lockdown, which is partly attributed to unchanged alkene concentrations. During the lockdown, alkene ozonolysis seems to be a significant radical primary source due to the elevated O3 concentrations. This unique data set during the lockdown period highlights the importance of controlling alkene emission to mitigate secondary pollution formation in Chengdu and may also be applicable in other regions of China given an expected NOx reduction due to the rapid transformation to electrified fleets in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Oxidación-Reducción , Ozono , China , Atmósfera/química , Óxidos de Nitrógeno/análisis , Monitoreo del Ambiente , SARS-CoV-2 , Humanos
4.
Sci Total Environ ; 926: 171873, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521275

RESUMEN

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Ciudades , Hidrocarburos Policíclicos Aromáticos/análisis , China/epidemiología
5.
Sci Total Environ ; 918: 170374, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307267

RESUMEN

Carbonaceous aerosols play a vital role in global climate patterns due to their potent light absorption capabilities. However, the light absorption enhancement effect (Eabs) of black carbon (BC) is still subject to great uncertainties due to factors such as the mixing state, coating material, and particle size distribution. In this study, fine particulate matter (PM2.5) samples were collected in Chengdu, a megacity in the Sichuan Basin, during the winter of 2020 and 2021. The chemical components of PM2.5 and the light absorption properties of BC were investigated. The results revealed that secondary inorganic aerosols and carbonaceous aerosols were the dominant components in PM2.5. Additionally, the aerosol filter filtration-dissolution (AFD) treatment could improve the accuracy of measuring elemental carbon (EC) through thermal/optical analysis. During winter in Chengdu, the absorption enhancement values of BC ranged between 1.56 and 2.27, depending on the absorption wavelength and the mixing state of BC and non-BC materials. The presence of internally mixed BC and non-BC materials significantly contributed to Eabs, accounting for an average of 68 % at 405 nm and 100 % at 635 nm. The thickness of the BC coating influenced Eabs, displaying an increasing-then-decreasing trend. This trend was primarily attributed to the hygroscopic growth and dehydration shrinkage of particulate matter. Nitrate, as the major component of BC coating, played a crucial role in the lensing effect and exhibited fast growth during variation in Eabs. By combining the results from PMF, we identified the secondary formation and vehicle emission as the primary contributors to Eabs. Consequently, this study can provide valuable insights into the optical parameters, which are essential for assessing the environmental quality, improving regional atmospheric conditions, and formulating effective air pollution control strategies.

6.
Huan Jing Ke Xue ; 45(1): 61-70, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216458

RESUMEN

In August 2022, Chengdu and Chongqing showed significant differences in ozone (O3) pollution. Chengdu had O3 pollution days for 20 days, whereas Chongqing had no O3 pollution days. In this study, we analyzed the influencing factors of this difference from the emission level of precursors and meteorological conditions. The results showed that:① the total mixing ratio of 52 VOCs (volatile organic compounds) (including 26 alkanes, 16 aromatics, and 10 alkenes) in Chengdu (18.8×10-9) was 2.8 times that of Chongqing (6.6×10-9), and the total O3 formation potential (OFP) (51.2×10-9) was 2.0 times that of Chongqing (25.0×10-9). The·OH radical loss rate (L·OH) (3.9 s-1) was 1.7 times that of Chongqing (2.3 s-1). The top three OFP in Chengdu were ethylene, m/p-xylene, and isoprene, and those in Chongqing were isoprene, ethylene, and propylene. The contribution rate of alkenes to O3 in Chongqing was 60.7%, whereas the OFP of alkenes and aromatics in Chengdu were 1.6 times and 2.9 times that in Chongqing. In conclusion, the total mixing ratio of VOCs, atmospheric photochemical activity, and O3 formation potential of Chengdu were higher than those of Chongqing. ② Isoprene was ranked first place in L·OH in both Chengdu and Chongqing, indicating that the contribution of biogenic sources to O3 pollution in August was significant. However, the biogenic source emission activity was in response to temperature. From August 14 to 24, the high temperature in Chongqing (38.3℃) decreased biogenic source emission activity, whereas the temperature in Chengdu (34.9℃) increased the biogenic sources emission activity. ③ The horizontal and vertical atmospheric diffusion conditions of Chongqing were better than those of Chengdu, and Chengdu was affected by regional pollution transmission.

7.
Genomics ; 115(5): 110687, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454940

RESUMEN

PURPOSE: As the most abundant RNA modification, N6-methyladenosine (m6A) methylation plays crucial roles in various diseases. The aim of this study is to comprehensively map the landscape of the mRNA m6A modification pattern in Barrett's esophagus (BE) in order to find key genes and potential therapy for BE and even esophageal adenocarcinoma (EAC). METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) were performed to compare the difference in mRNA m6A methylation and differentially expressed mRNAs between BE and normal control (NC) tissues. Bioinformatics analysis was used to describe the m6A modification pattern and specific genes in BE and NC tissues. RESULTS: Through MeRIP-seq, we obtained m6A methylation profiling in BE and NC tissues. In total, 11,026 unique peaks were detected in the BE groups, whereas 8564 unique peaks were detected in the NC groups. Peaks were primarily enriched within CDS with GGACU motifs and most of the peaks were within 1000 bp in width. Moreover, functional enrichment analysis demonstrated that hypermethylated and hypomethylated genes were significantly enriched in coronavirus disease pathway, calcium signaling pathway and MAPK signaling pathways. Furthermore, PPI network was conducted and 18 hub genes were identified via STRING database and Cystoscope. Among them, ACTA1, CDC20, CKM, KIF20a, MYH11, TPM2, MYL9, DES, TNNT3 were overexpressed in EAC in the GEPIA gene bank and TPM1, KIF20a impaired patients' survival in the Kaplan-Meier plotter database. Finally, functional enrichment analysis demonstrated that co-expressed genes of TPM1 were significantly enriched in calcium signaling pathway, cGMP-PKG signaling pathway and PI3K-Akt signaling pathway. CONCLUSION: Our study is the first to perform comprehensive and transcriptome-wide maps to identify the potential roles played by m6A methylation in BE, which widely involved in oxidative stress. This foresees a guiding role in revealing the molecular mechanism of m6A-mediated genes that govern the pathogenesis and progression of BE and EAC.

8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(2): 186-190, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872439

RESUMEN

Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease of the intestine, with unknown etiology and the incidence is increasing year by year. Traditional treatment has limited effect. Mesenchymal stem cell-derived exosomes (MSC-Exos) are a group of nano-sized extracellular vesicles. Their function is equivalent to that of mesenchymal stem cells (MSCs), with no tumorigenicity and high safety. They represent a novel cell-free therapy. It has been shown that MSC-Exos can improve IBD by effects including anti-inflammation, antioxidant stress, repairing intestinal mucosal barrier and immune regulation. However, their clinical application still faces some problems, such as the lack of standardized production technology, lack of specific IBD diagnostic molecules and anti-intestinal fibrosis.


Asunto(s)
Exosomas , Vesículas Extracelulares , Enfermedades Inflamatorias del Intestino , Células Madre Mesenquimatosas , Humanos , Antioxidantes
9.
Environ Pollut ; 323: 121309, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822310

RESUMEN

In recent years, the annual mean concentration of PM2.5 has decreased in Chengdu, China; however, atmospheric visibility has not improved accordingly. Low-visibility events occurred even when the PM2.5 mass concentrations were below the national ambient air quality secondary standard (daily mean concentration, 75 µg/m3). In this study, the non-linear relationship between PM2.5 and visibility was analyzed under different NO3- mass fractions in PM2.5 based on 2-year field observation data. The results indicated that NO3- formation contributed to particulate pollution events and reduced atmospheric visibility. Multiple linear regression was used to propose a localized reconstruction equation for the light-scattering coefficient. According to the maximum likelihood estimation method and log-transformed residuals, the mass scattering coefficients (MSEs) of organic matter (OM), NH4NO3, and (NH4)2SO4 in Chengdu were 7.42, 3.83, and 3.80, respectively. OM and NH4NO3 contributed to more than 50% of the light-extinction coefficient (bext). NH4NO3 was the main pollutant causing the substantial increase in bext. Chengdu has a high relative humidity (annual mean 70%), and under such conditions, the contribution of NH4NO3 to bext was considerably enhanced through hygroscopic growth and heterogeneous reactions. This study estimated the localized MSEs of OM, NH4NO3, and (NH4)2SO4 in Chengdu and emphasized that effective control measures to reduce nitrate and its precursors could simultaneously ameliorate air quality and visibility in humid regions with poor atmospheric visibility.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Nitratos/análisis , Modelos Lineales , Monitoreo del Ambiente , Estaciones del Año , Contaminación del Aire/análisis , China , Aerosoles/análisis
10.
J Environ Sci (China) ; 126: 708-721, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503796

RESUMEN

Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.


Asunto(s)
Carbón Mineral , Contaminación Ambiental , China , Sulfatos , Óxidos de Azufre , Carbono
11.
Environ Pollut ; 312: 120004, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995293

RESUMEN

This study aims at exploring size distribution, meteorological influence and uncertainty for source-specific risks of atmospheric particulate matter (PM), which can improve risk-mitigation strategies for health protection. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 were detected in a Chinese megacity during 2011-2021. A new method named as PMFBMR, which combines the Positive Matrix Factorization, Bootstrapping, Mote Carlo and Risk assessment model, was developed to estimate uncertainty of source-specific risks. It was found that PAH risks concentrated in fine PM, while HMs showed high risks in both fine and coarse PMs. For PM2.5, HQ (non-cancer risk hazard quotient) of gasoline combustion (GC), diesel and heavy oil combustion (DC), coal combustion (CC), industrial source (IS), resuspended dust (RD) and secondary and transport PM (ST) were 0.6, 1.4, 0.9, 1.6, 0.3, and 0.3. ILCR (lifetime cancer risk) of sources were IS (9.2E-05) > DC (2.6E-05) = CC (2.6E-05) > RD (2.2E-05) > GC (1.7E-05) > ST (6.4E-06). PM2.5 from GC, DC, CC and IS caused higher risks than coarse PM, while coarse PM from RD caused higher risks. Source-specific risks were influenced not only by emissions, but also by meteorological condition and dominant toxic components. Risks of GC and DC were usually high during stable weather. Some high risks of CC, IS and RD occurred at strong WS due to transport or wind-blown resuspension. GC and DC risks (influenced by both PAHs and HMs) showed strong relationship with T, while IS and RD risks (dominated by HMs) showed weak link with meteorological conditions. For uncertainty of source-specific risks, HQ and ILCR were sensitive for different variables, because they were dominated by components with different uncertainties. When using source-specific risks for risk-mitigation strategies, the focused toxic components, used toxic values, PM sizes and uncertainty are necessary to be considered.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Carbón Mineral , Polvo/análisis , Monitoreo del Ambiente/métodos , Gasolina , Metales Pesados/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Incertidumbre
12.
Environ Sci Pollut Res Int ; 29(52): 79002-79015, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35704234

RESUMEN

PM2.5 samples collected over a 1-year period in a Chinese megacity were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble ions, elements, and organic markers such as polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and n-alkanes. To study the applicability of organic markers in source apportionment, the relationship between organic and inorganic components was analyzed, and four scenarios were implemented by incorporating different combinations of organic and inorganic tracers. The consistent temporal variations trend of 4-ring PAHs and SO42- prove that coal burning directly emits a portion of sulfate. The concentrations of ∑5-7-ring PAHs, NO3-, and NO2 show a trend of simultaneous increase and decrease, implying collective impacts from the vehicle source. The concentrations of OC and EC positively correlate with the 5-7-ring PAHs and Cu and Zn, which proves that part of Cu and Zn comes from vehicle emissions. Five factors were identified by incorporating only conventional components, including secondary source (SS, 30%), fugitive dust (FD, 14%), construction dust (CD, 4%), traffic source (TS, 19%), and coal combustion (CC, 14%). Six factors were identified by incorporating conventional components and PAHs, including SS (28%), FD (15%), CD (4%), CC (13%), gasoline vehicles (GV, 12%), and diesel vehicles (DV, 10%). Eight factors were identified by incorporating conventional components, PAHs, hopanes, and n-alkanes, including SS (26%), FD (17%), CD (3%), GV (14%), DV (8%), immature coal combustion (ICC, 5%), mature coal combustion (MCC, 10%), and biogenic source (BS, 1%).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Emisiones de Vehículos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Estaciones del Año , Contaminación del Aire/análisis , Gasolina , Dióxido de Nitrógeno , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Carbón Mineral/análisis , Polvo/análisis , Carbono/análisis , Agua , Alcanos , Sulfatos , Triterpenos Pentacíclicos
13.
Comput Math Methods Med ; 2022: 5248230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529260

RESUMEN

Objective: To explore the application value of color Doppler ultrasonography combined with thyroid autoantibody tests in the early diagnosis of thyroid cancer. Methods: The medical data of 100 patients with thyroid nodules treated in our hospital from June 2019 to June 2021 were retrospectively analyzed; all patients received color Doppler ultrasonography and thyroid autoantibody tests before surgery and were divided into the benign lesion group (n = 45) and the malignant lesion group (n = 55) according to the postoperative pathological findings (the gold standard), so as to compare and analyze the application value of color Doppler ultrasonography, thyroid autoantibody tests, and their combination in the early diagnosis of thyroid cancer. Results: Compared with the pathological findings, the accuracy rate, sensitivity, specificity, positive predictive value, and negative predictive value of the combined diagnosis were significantly higher than those in the single diagnosis of color Doppler ultrasonography, TgAb test, TPOAb test, and TRAb test (P < 0.05), and by plotting the ROC curves to analyze the effect of these modalities in diagnosing early thyroid diseases, the results showed that the areas under the curve from large to small were combined diagnosis, color Doppler ultrasonography, TgAb test, TPOAb test, and TRAb test. Conclusion: Color Doppler ultrasonography has many advantages in the diagnosis of thyroid nodules, such as easy operation, painlessness, noninvasiveness, high efficiency, and repeatable detection, and the high-definition probe is able to show tiny lesions, echogenicity, blood flow signal, and other characteristics of foci. Combining color Doppler ultrasonography with testing thyroid autoantibodies such as TgAb, TPOAb, and TRAb can effectively improve the detection rate of early thyroid cancer, presenting significant reference value and meaning to clinical diagnosis and treatment of thyroid cancer.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Diagnóstico Diferencial , Detección Precoz del Cáncer , Humanos , Estudios Retrospectivos , Sensibilidad y Especificidad , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/patología , Ultrasonografía , Ultrasonografía Doppler en Color
14.
J Environ Sci (China) ; 114: 115-125, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459477

RESUMEN

Surface ozone (O3) has become a critical pollutant impeding air quality improvement in many Chinese megacities. Chengdu is a megacity located in Sichuan Basin in southwest China, where O3 pollution occurs frequently in both spring and summer. In order to understand the elevated O3 during spring in Chengdu, we conducted sampling campaign at three sites during O3 pollution episodes in April. Volatile organic compounds (VOCs) compositions at each site were similar, and oxygenated VOCs (OVOCs) concentrations accounted for the highest proportion (35%-45%), followed by alkanes, alkens (including acetylene), halohydrocarbons, and aromatics. The sensitivity of O3 to its precursors was analyzed using an observation based box model. The relative incremental reactivity of OVOCs was larger than other precursors, suggesting that they also played the dominant role in O3 formation. Furthermore, the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city. The main sources of VOCs in spring were from combustion (27.75%), industrial manufacturing (24.17%), vehicle exhaust (20.35%), and solvent utilization (18.35%). Discussions on VOCs and NOx reduction schemes suggested that Chengdu was typical in the VOC-limited regime, and VOC emission reduction would help to prevent and control O3. The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO2 needs to reach more than 3 in order to achieve O3 prevention. Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Solventes , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
15.
J Environ Sci (China) ; 114: 179-193, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459483

RESUMEN

Integral to the urban ecosystem, greening trees provide many ecological benefits, but the active biogenic volatile organic compounds (BVOCs) they release contribute to the production of ozone and secondary organic aerosols, which harm ambient air quality. It is, therefore, necessary to understand the BVOC emission characteristics of dominant greening tree species and their relative contribution to secondary pollutants in various urban contexts. Consequently, this study utilized a dynamic enclosure system to collect BVOC samples of seven dominant greening tree species in urban Chengdu, Southwest China. Gas chromatography/mass spectrometry was used to analyze the BVOC components and standardized BVOC emission rates of each tree species were then calculated to assess their relative potential to form secondary pollutants. We found obvious differences in the composition of BVOCs emitted by each species. Ficus virens displayed a high isoprene emission rate at 31.472 µgC/(gdw (g dry weight)•hr), while Cinnamomum camphora emitted high volumes of D-Limonene at 93.574 µgC/(gdw•hr). In terms of the BVOC emission rates by leaf area, C. camphora had the highest emission rate of total BVOCs at 13,782.59 µgC/(m2•hr), followed by Cedrus deodara with 5466.86 µgC/(m2•hr). Ginkgo biloba and Osmanthus fragrans mainly emitted oxygenated VOCs with lower overall emission rates. The high BVOC emitters like F. virens, C. camphora, and Magnolia grandiflora have high potential for significantly contributing to environmental secondary pollutants, so should be cautiously considered for future planting. This study provides important implications for improving urban greening efforts for subtropical Chinese urban contexts, like Chengdu.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Ecosistema , Contaminantes Ambientales/análisis , Árboles , Compuestos Orgánicos Volátiles/análisis
16.
Sci Total Environ ; 790: 148149, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380266

RESUMEN

Volatile organic compounds (VOCs) from anthropogenic sources are deleterious to air quality, climate, human health and vegetation. However, research on VOCs source profiles of the non-solvent use in some industries and the emission characteristics of motor vehicles under actual road conditions is limited in China. In this research, VOCs source profiles of industries (wood-based panel manufacturing and pharmacy) based on all product processes were constructed, and those of light and medium duty vehicles exhaust based on actual road conditions at different speeds were acquired in Chengdu, a megacity in southwest China. The results show that VOCs groups of various sources were dominated by oxygenated VOCs (OVOCs), which accounted for 27-84% of the total VOCs emission. Due to the great contribution of OVOCs to industrial source reactivity (SR), attention should be paid to the control over the emissions of the species with high reactivity, such as aromatics and alkenes, but also to the production processes with relatively large proportions of OVOCs species emission. VOCs emissions from gasoline and diesel vehicles running at a speed ranging from 0 to 40 km/h have approximately the same ozone formation potential (OFP), while the contribution of VOCs emission from diesel vehicles to the formation of urban ozone pollution deserves further attention. It is found that VOCs emission characteristics of some industries in China have changed as the upgrading of production processes in automobile manufacturing and other industries, such as the extensive use of water-based coatings instead of outdated solvent-based coatings, which increased the uncertainty of judgment parameters (B/T ratio, etc.) in source apportionment research. The ranges of B/T ratio of industrial process sources, solvent use sources and motor vehicles are 0.00-0.23, 0.01-0.75 and 0.35-0.92, respectively. Therefore, updating existing source profiles and further understanding the emission constitutions of characteristic species in these source profiles (such as BTEX ratio) will be conducive to further research on emission inventory, source apportionment for O3 pollution control effectively.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Humanos , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
17.
Environ Int ; 146: 106162, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069984

RESUMEN

Synchronous heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in inhalable particulate matter (PM10) were measured during 2009-2012 and 2015-2016 in a Chinese megacity (Chengdu) to understand the variations in source-specific health risks during haze episodes. Samples were divided into four mass concentration levels: PM10 ≤ 150 µg m-3 (L1), 150 µg m-3 < PM10 ≤ 250 µg m-3 (L2), 250 µg m-3 < PM10 ≤ 350 µg m-3 (L3), and PM10 > 350 µg m-3 (L4). The percentages of some HMs and PAHs (accounting for PM10) decreased from L1 to L4, indicating that they exhibited lower growth rates than other species during heavy pollution. The combined cancer risk (R) for HMs and PAHs was higher at L1 and L4, and the combined non-cancer risk (HQ) was significantly high at L4. The HMs and PAHs combined source-specific risk apportion (HP-SRA) model was employed to quantify the source-specific risks. The relative contributions of (i) diesel and gasoline vehicles to the R, and (ii) crustal dust to the HQ increased during heavy pollution (L3 and L4). The relative contribution of industrial source declined from 81% (L1) to 60% (L4) for the HQ, and from 49% (L1) to 36% (L4) for the R, implying that the control of industrial emissions during heavy pollution events could alleviate risk growth as a co-benefit of controlling PM mass concentration. However, the risks associated with industrial emissions should also be considered during 'clean' days.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente , Metales Pesados/análisis , Metales Pesados/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Medición de Riesgo , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
18.
Sci Total Environ ; 756: 144127, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33288267

RESUMEN

Photolysis of nitrous acid (HONO) is one of the major sources for atmospheric hydroxyl radicals (OH), playing significant role in initiating tropospheric photochemical reactions for ozone (O3) production. However, scarce field investigations were conducted to elucidate this effect. In this study, a field campaign was conducted at a suburban site in southwest China. The whole observation was classified into three periods based on O3 levels and data coverage: the serious O3 pollution period (Aug 13-18 as P1), the O3 pollution period (Aug 22-28 as P2) and the clean period (Sep 3-12 as P3), with average O3 peak values of 96 ppb, 82 ppb and 44 ppb, respectively. There was no significant difference of the levels of O3 precursors (VOCs and NOx) between P1 and P2, and thus the evident elevation of OH peak values in P1 was suspected to be the most possible explanation for the higher O3 peak values. Considering the larger contribution of HONO photolysis to HOX primary production than photolysis of HCHO, O3 and ozonolysis of Alkenes, sensitivity tests of HONO reduction on O3 production rate in P1 are conducted by a 0-dimension model. Reduced HONO concentration effectively slows the O3 production in the morning, and such effect correlates with the calculated production rate of OH radicals from HONO photolysis. Higher HONO level supplying for OH radical initiation in the early morning might be the main reason for the higher O3 peak values in P1, which explained the correlation (R2 = 0.51) between average O3 value during daytime (10:00-19:00 LT) and average HONO value during early morning (00:00-05:00 LT). For nighttime accumulation, a suitable range of relative humidity that favored NO2 conversion within P1 was assumed to be the reason for the higher HONO concentration in the following early morning which promoted O3 peak values.

19.
Huan Jing Ke Xue ; 41(10): 4455-4461, 2020 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-33124377

RESUMEN

As flue gas desulfurization (FGD) was one of the most important purification processes of coal-fired boilers, we selected four boilers, which were equipped with wet limestone, furnace calcium injection, ammonia-based, and double-alkali FGDs, to research the influence of FGDs on the flue particulate matter (PM). The flue PM before and after the FGD were sampled using laboratory resuspension and dilution tunnel sampling methods, respectively, and the PM was analyzed for its chemical composition (i.e., ions, elements, and carbon). The results showed that the types of desulfurizers could influence the composition of the flue PM. After passing through the wet limestone, ammonia-based, and double-alkali FGDs, the proportion of Ca, NH4+, and Na in PM2.5 increased from 5.1% to 24.8%, from 0.8% to 7.3%, and from 0.9% to 1.7%, respectively. The influence of wet and dry FGDs on the flue PM were different. The fraction of ions in the PM emitted from the wet FGD were higher than those from the dry FGD. The proportion of SO42- in the flue PM2.5 increased from 2.0% and 6.7% to 9.6% and 11.9% using the wet limestone and ammonia-based FGDs, respectively, and Cl- increased from 0.4% and 1.2% to 3.8% and 5.2%. In addition, the amount of heavy metals (e.g., Cr, Pb, Cu, Ti, and Mn) in PM2.5 declined after the wet FGDs. The PM2.5 emitted from the dry FGD boiler was richer in crustal elements, such as Al, Si, and Fe, than that from the wet FGDs. The wet FGDs also effected the carbonaceous components of the flue PM. After passing through the wet limestone and ammonia-based FGDs, the proportion of elemental carbon in the flue PM2.5 decreased from 6.1% to 0.9% and from 3.6% to 0.7% respectively, but the organic carbon content did not decrease.

20.
Huan Jing Ke Xue ; 41(7): 3042-3055, 2020 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-32608876

RESUMEN

The volatile organic compound (VOC) emission characteristics of various production procedures were analyzed through GC-MS after the emissions of typical enterprises such as automobile manufacturing, petrochemical, and other industries had been sampled with SUMMA canisters. Each production procedure in the automobile manufacturing and petrochemical industries was considered. The results showed that each automobile manufacturing procedure had its own dominant species, and alkanes (32%) and aromatics (35%) were the main emission species of coating spraying. The emission characteristics of furniture manufacturing were highly correlated with the raw materials, and the VOC emission species were mainly composed of aromatics (50%) and oxygenated VOCs (OVOCs) (38%). As for the petrochemical industry, VOC concentrations in various process plant areas ranged from 49 µg·m-3 to 1387 µg·m-3. As the main products of the refining area were C5-C9 gasoline and benzene series, whereas comparatively more solvents were used in the chemical area, which would generate alkene products, VOC concentrations greatly differed in the various process plant areas. In terms of electronic manufacturing, OVOCs were the main emission species, accounting for more than 50% of total VOCs. Alkanes and OVOCs were the main contributors to VOC emissions in shoemaking, accounting for 52% and 36% on average, respectively, which was strongly related to the species of the used solvents. The VOC emission species of automobile manufacturing were quite different, predominantly including n-dodecane and 2-butanone. The emission species of furniture manufacturing mainly included styrene, ethyl acetate, m/p-xylene, etc., which are typical species of coatings and diluents. As for the differences in the emission species of process plant areas in the petrochemical industry, styrene was the main species in the refining area, 1,3-butadiene in the chemical area, C3-C5 alkanes in the storage area, and C6-C8 alkanes in the wastewater treatment area. The main emission species of electronic manufacturing were ethanol, acetone, and other aldehyde ketone species. The emission species of shoemaking enterprises are mainly C5 and C6 alkanes. According to the results of ozone formation potential (OFP), alkenes and aromatics were the main VOC emission species that contribute significantly to the OFP in the automobile manufacturing and petrochemical industries, with relatively high pollution source reaction activity. The results showed that the emission ratio (17%-96%) and OFP contributions of OVOCs were significant in various industries. Therefore, for VOC emission control, in addition to focusing on the control of aromatics and alkenes, attention should also be paid to OVOCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA