Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Sci Food Agric ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311215

RESUMEN

BACKGROUND: As natural polymer materials, barley proteins have been utilized to fabricate nanocarriers to encapsulate and delivery hydrophobic bioactive ingredients. However, as a result of the high proportion of hydrophobic amino acids and structural rigidity, barley protein-based nanocarriers tend to aggregate easily and have a low loading capacity, which greatly limits their application. In the present study, barley proteins were enzymolyzed to fabricate nanomicelles and then applied to encapsulate hydrophobic bioactive ingredient. RESULTS: Self-assembled barley peptides could be obtained by controllable enzymolysis of barley proteins. The obtained barley peptides could self-assemble into nanomicelles (BPNMs) with a diameter of approximately 90 nm when the concentration was > 2.1 µg mL-1. Hydrophobic interaction, disulfide bonds and hydrogen bonds were involved in maintaining the structure of BPNMs. Six self-assembled peptides (QQPFPQ, QTPLPQ, QLPQIPE, QPFPQQPQLPH, QPFPQQPPFGL and QPFPQQPPFWQQQ) were identified and they were characterized by alternating arrangement of hydrophobic amino acids and hydrophilic amino acids. Moreover, BPNMs were utilized to encapsulate hydrophobic bioactive ingredient quercetin. When quercetin was encapsulated by BPNMs, its water solubility was significantly increased, being approximately 30-fold higher than free quercetin. Meanwhile, encapsulation of BPNMs could greatly increase quercetin stability. The interaction between BPNMs and quercetin occurred spontaneously, mainly driven by van der Waals forces and hydrogen bonds. CONCLUSION: In the present study, BPNMs were successfully developed and could be used as a promising delivery system to improve the water solubility and stability of hydrophobic bioactive ingredients. © 2024 Society of Chemical Industry.

2.
Int J Food Sci Nutr ; : 1-14, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285614

RESUMEN

Oat anthranilamides have demonstrated antioxidant and anti-inflammatory effects; however, the precise mechanism of action remains unclear. This study investigated the impact of oat anthranilamide B (AVN B) on high-fat diet (HFD)-induced intestinal inflammation in mice and its underlying mechanisms. The results indicated that AVN B supplementation mitigated weight gain and reduced inflammatory and oxidative stress markers in serum, liver, and intestines. It improved intestinal barrier dysfunction by upregulating the expression levels of Occludin and MUC2 while simultaneously reducing intestinal inflammation by inhibiting the TLR4/NF-κB signalling pathway. Additionally, AVN B treatment improved gut microbiota composition. It increased the abundance of beneficial flora and the production of short-chain fatty acids (SCFAs), especially propionate and butyrate, associated with reduced production of pro-inflammatory factors and enhanced intestinal protection. The findings provide scientific evidence for the potential of AVN B as an anti-inflammatory agent.


Oat AVN B reduces body weight gain and inflammation levels in HFD-fed miceAVN B protects the intestinal barrier and inhibits intestinal inflammationAVN B inhibits TLR4/NF-κB signalling pathway in the ileum of HFD-induced miceAVN B improves gut microbial imbalance in HFD-induced miceAVN B increases butyrate and propionic acid by promoting SCFA-producing bacteria.

3.
Gels ; 10(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39195058

RESUMEN

As an anti-staling agent in bread, the desorption isotherm of polydextrose has not been studied due to a very long equilibrium time. The adsorption and desorption isotherms of five Chinese polydextrose products were measured in the range of 0.1-0.9 aw and 20-35 °C by a dynamic moisture sorption analyzer. The results show that the shape of adsorption and desorption isotherms was similar to that of amorphous lactose. In the range of 0.1-0.8 aw, the hysteresis between desorption and adsorption of polydextrose was significant. The sorption isotherms of polydextrose can be fitted by seven commonly used models, and our developed seven-parameter polynomial, the adsorption equations of generalized D'Arcy and Watt (GDW) and Ferro-Fontan, and desorption equations of polynomial and Peleg, performed well in the range of 0.1-0.9 aw. The hysteresis curves of polydextrose at four temperatures quickly decreased with aw increase at aw ˂ 0.5, andthereafter slowly decreased when aw ≥ 0.5. The polynomial fitting hysteresis curves of polydextrose were divided into three regions: ˂0.2, 0.2-0.7, and 0.71-0.9 aw. The addition of 0-10% polydextrose to rice starch decreased the surface adsorption and bulk absorption during the adsorption and desorption of rice starch, while it increased the water adsorption value at aw ≥ 0.7 due to polydextrose dissolution. DSC analysis showed that polydextrose as a gelling agent inhibited the retrogradation of rice starch, which could be used to maintain the quality of cooked rice.

4.
Carbohydr Polym ; 343: 122412, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174077

RESUMEN

As one of the crucial components of the food system, starch can be hydrolyzed into glucose after gastrointestinal digestion, so regulating its digestive properties is vital for maintaining health. Microwaves can promote the rearrangement of intramolecular structure of starch, thus improving its physicochemical properties, enhancing its slowly digestible features, and expanding its scope of application. This review zooms in describing recent research results concerning the effects of microwave treatment on the multi-scale structure and physicochemical properties of starch and summarizing the patterns of these changes. Furthermore, the changes in starch structure, resistant starch content, and glycemic index after digestion are pointed out to gain an insight into the enhancement of starch slowly digestible properties by microwave treatment. The resistance of starch to enzymatic digestion may largely hinge on the specific structures formed during microwave treatment. The multi-level structural evolutions of starch during digestion endow it with the power to resist digestion and lower the glycemic index. The properties of starch dictate its application, and these properties are highly associated with its structure. Consequently, understanding the structural changes of microwave-modified starch helps to prepare modified starch with diversified varieties and functional composites.


Asunto(s)
Digestión , Microondas , Almidón , Almidón/química , Humanos , Hidrólisis , Índice Glucémico
5.
J Food Sci ; 89(7): 4298-4311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957101

RESUMEN

This study explored the mechanism of l-lysine intervention in wheat gluten protein (WG) gel formation under a microwave (MW) field. The results showed that the MW treatment had higher ζ-potential values at the same heating rate. After adding l-lysine, the solution conductivity and dielectric loss were significantly increased. Moreover, the WG gel strength enhanced 4.40% under the MW treatment. The Fourier spectra showed that the α-helix content was decreased 13.78% with the addition of lysine. The ultraviolet absorption spectra and fluorescence spectra indicated that MW irradiation impacted the interactions between WG molecules more effectively than the water bath heating, promoting the denaturation and unfolding of the protein structure. In addition, scanning electron microscopy analysis showed that the incorporation of lysine promoted an ordered network structure formation of the protein, which enhanced the gel properties. This indicated that the zwitterion of l-lysine played a regulatory role in the aggregation of proteins in the MW field.


Asunto(s)
Glútenes , Lisina , Microondas , Triticum , Lisina/química , Triticum/química , Glútenes/química , Agregado de Proteínas , Proteínas de Plantas/química , Calor , Geles/química
6.
Food Chem ; 453: 139642, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788643

RESUMEN

Caffeic acid phenethyl ester (CAPE) is a naturally occurring phenolic compound with various biological activities. However, poor water solubility and storage stability limit its application. In this context, sorghum peptides were used to encapsulate CAPE. Sorghum peptides could self-assemble into regularly spherical nanoparticles (SPNs) by hydrophobic interaction and hydrogen bonds. Solubility of encapsulated CAPE was greatly increased, with 9.44 times higher than unencapsulated CAPE in water. Moreover, the storage stability of CAPE in aqueous solution was significantly improved by SPNs encapsulation. In vitro release study indicated that SPNs were able to delay CAPE release during the process of gastrointestinal digestion. Besides, fluorescence quenching analysis showed that a static quenching existed between SPNs and CAPE. The interaction between CAPE and SPNs occurred spontaneously, mainly driven by hydrophobic interactions. The above results suggested that SPNs encapsulation was an effective approach to improve the water solubility and storage stability of CAPE.


Asunto(s)
Ácidos Cafeicos , Nanopartículas , Péptidos , Alcohol Feniletílico , Solubilidad , Sorghum , Ácidos Cafeicos/química , Sorghum/química , Péptidos/química , Nanopartículas/química , Alcohol Feniletílico/química , Alcohol Feniletílico/análogos & derivados , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad de Medicamentos , Composición de Medicamentos , Enlace de Hidrógeno , Tamaño de la Partícula
7.
Foods ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611360

RESUMEN

To establish the safe and reproducible effects of cold plasma (CP) technology on food products, this study evaluated the gelatinization parameters, fatty acid profile, and hygroscopic properties of rice grains repeatedly treated with low-pressure radiofrequency (RF) helium CP (13.56 MHz, 140 Pa, 120 W-20s, 0-4 times, and 300 g sample). Compared with the untreated (zero times) sample, with an increase in CP treatment times from one to four on rice, the water contact angle and cooking time decreased, while the water absorption rate and freshness index increased, and the pH value remained unchanged. CP repeating treatments essentially had no effect on the gelatinization enthalpy, but significantly increased the peak temperature of gelatinization. From the pasting profile of rice that has been repeatedly CP treated, the peak, breakdown, and setback viscosities in flour paste decreased. CP repeating treatments on rice did not change the short-range molecular order of starch. Compared with the untreated sample, the first helium CP treatment maintained the content of C18:1n9c, C18:2n6c, and C18:3n3, but the second to fourth CP treatment significantly decreased contents of these fatty acids (FAs) as the C18:0 content increased. The first three CP treatments can increase the water and sucrose solvent retention capacity in rice flours. CP repeatedly treated rice first exhibits the similar monolayer water content and solid surface area of water sorption. Principal component analysis shows that contact angle, pasting parameters, and fatty acid profile in milled rice are quite sensitive to CP treatment. Results support that the effect of low-pressure RF 120W helium CP treatment 20 s on rice grains is perdurable, and the improvement of CP intermittent treatments on rice cooking and pasting properties is an added benefit, and the hygroscopic properties of rice was kept.

8.
Foods ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38472867

RESUMEN

Caffeic acid phenethyl ester (CAPE) is an important active component of propolis with many bioactivities. However, its efficiency and practical application are restricted due to its poor aqueous solubility and storage stability. In this study, a nanocarrier was fabricated to encapsulate CAPE using self-assembled rice peptides obtained by controllable enzymolysis. The physicochemical properties, encapsulation efficiency, and loading capacity of rice peptides nanoparticles (RPNs) were characterized. The storage stability, in vitro release, and interaction mechanisms between CAPE and RPNs were investigated. The results showed that RPNs, mainly assembled by disulfide bonds and hydrogen bonds, possessed an effective diameter of around 210 nm and a high encapsulation efficiency (77.77%) and loading capacity (3.89%). Importantly, the water solubility of CAPE was increased by 45 times after RPNs encapsulation. Moreover, RPNs encapsulation also significantly increased CAPE stability, about 1.4-fold higher than that of unencapsulated CAPE after 18-day storage. An in vitro release study demonstrated that RPNs could delay the release of CAPE, implying a better CAPE protection against extreme environments during digestion. Hydrogen bond and van der Waals force are the predominant interaction forces between RPNs and CAPE. Therefore, the newly developed nanoparticle is a potential delivery system that could effectively improve the aqueous solubility and stability of CAPE.

9.
Food Chem X ; 21: 101237, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38426075

RESUMEN

Diosmin is a flavonoid derived from plants, possessing anti-inflammatory, antioxidant, antidiabetic, neuroprotective and cardiovascular protective properties. However, diosmin has low solubility in water, leading to low bioavailability. In this study, we constructed bilayer nanoparticles with trimethyl chitosan and soy peptides to improve the oral bioaccessibility and bioavailability of diosmin, and determined the characteristics and antioxidant properties of the diosmin-loaded nanoparticles. The results showed that the size of the nanoparticles was around 250 nm with the encapsulation efficiency higher than 97 %, and the nanoparticles were stable under regular conditions. In vitro digestion suggested the nanoparticles could protect diosmin from releasing in gastric digestion but promote the bioaccessibility of diosmin in intestine. Furthermore, the diosmin-loaded nanoparticles presented excellent antioxidant activities in vitro and significantly decreased the Lipopolysaccharides-induced brain Malondialdehyde (MDA) level by oral administration. Therefore, the reported nanoparticles may be an effective platform for improving the oral bioavailability of diosmin.

10.
Food Chem ; 446: 138786, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422637

RESUMEN

This study investigated the effects of microwave on preserving the quality of quinoa during storage. Quinoa treated with 9W/60s exhibited a significant decrease in fatty acid values compared to hot air treatment. Microwave effectively delayed lipid oxidation during quinoa storage by suppressing the increase in peroxide values. MDA gradually accumulated from peroxides during storage, reaching its peak at 0.423 µmol/L in the second week. Microwave disrupted the original hydrogen bonds in lipase, causing the unwinding of the α-helix and resulting in the loss of its regular structure. Microwave reduced the stability of the ß-sheet structure in lipoxygenase, breaking the natural secondary structure composition. The observed fluorescence and UV spectra features were similar, indicating that microwave alter the peptide chain of the enzyme's skeletal structure, increasing the exposure of hydrophobic chromophores. These results indicated the potential of microwave to enhance the stability of quinoa during storage.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Microondas , Peróxidos , Ácidos Grasos
11.
Food Funct ; 15(4): 2208-2220, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38317482

RESUMEN

In our previous study, a polyphenol-utilization targeted quinoa product was developed via solid-state fermentation with Monascus anka. In this study, we investigated the polyphenol-related novel functions of the fermented product further. Compared with unfermented quinoa, M. anka fermented quinoa alleviated the trapping effect of the macromolecules, especially in the colonic fermentation stage, resulting in enhanced polyphenol bioaccessibility. Lachnoclostridium, Megasphaera, Megamonas, Dialister, and Phascolarctobacterium might contribute to polyphenol liberation and metabolism in fermented quinoa. Additionally, fermented quinoa polyphenols presented an efficient anti-obesity effect by enhancing hepatic antioxidant enzyme activities, suppressing fatty acid synthesis, accelerating fatty acid oxidation, and improving bile acid synthesis. Moreover, fermented quinoa polyphenol supplementation alleviated gut microbiota disorder induced by a high-fat diet, resulting in a decreased ratio of Firmicutes/Bacteroidota, and increased relative abundances of Lactobacillus and Lachnoclostridium. The obtained results suggested that the principal anti-obesity effect of fermented quinoa polyphenols might act through the AMPK/PPARα/CPT-1 pathway. In conclusion, M. anka solid-state fermentation effectively enhanced the bioaccessibility of quinoa, and the fermented quinoa polyphenols showed considerable anti-obesity effect. Our findings provide new perspectives for the development of dietary polyphenol-based satiety-enhancing functional foods.


Asunto(s)
Chenopodium quinoa , Microbioma Gastrointestinal , Monascus , Polifenoles/farmacología , Fermentación , Ácidos Grasos
12.
Int J Biol Macromol ; 256(Pt 2): 127574, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952797

RESUMEN

Gel property is one of the most important abilities to endow protein-based food products with a unique texture and higher overall acceptability. Cereal ß-glucan (BG) is widely applied in protein-based products to improve the stability of the protein gel by increasing water holding capacity, storage modulus (G'), loss modulus (G") and linking with protein through more exposed sites, making it easier to form a stronger three-dimensional gel network. In addition, BG may be cross-linked with proteins, or physically embedded and covered in protein network structures, interacting with proteins mainly through non-covalent bonds including hydrogen bonding and electrostatic interaction. Furthermore, the transition of the α-helix to the ß-form in the protein secondary structure also contributes to the stability of the protein gel. The practical applications of BG from different cereals in protein-based products are summarized, and the rheological properties, microstructure of protein as well as the underlying interaction mechanisms between BG and protein are discussed. In conclusion, cereal BG is a promising polysaccharide in developing nutritional protein-based products with better sensory properties.


Asunto(s)
beta-Glucanos , beta-Glucanos/química , Reología , Polisacáridos , Geles/química
13.
J Sci Food Agric ; 104(1): 295-302, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37563097

RESUMEN

BACKGROUND: Wheat protein intake leads to improved appetite control. However, the active components causing appetite in wheat have not been fully clarified. Gut cholecystokinin (CCK) plays a vital role in appetite control. This study aimed to investigate the ability of wheat protein digest (WPD) to stimulate CCK secretion and clarify the active components and target of action. RESULTS: WPD was prepared by a simulated gastrointestinal digestion model. WPD treatment with a concentration of 5 mg mL-1 significantly stimulated CCK secretion in enteroendocrine STC-1 cells (P < 0.05). Furthermore, oral gavage with WPD in mice significantly increased plasma CCK level at 60 min (P < 0.01). Preparative C18 column separation was used to isolate peptide fractions associated with CCK secretion and peptide sequences were identified by liquid chromatography-tandem mass spectrometry. A new CCK-releasing peptide, RYIVPL, that potently stimulated CCK secretion was successfully identified. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist, NPS 2143, CCK secretion induced by WPD or RYIVPL was greatly suppressed, suggesting that CaSR was involved in WPD- or RYIVPL-induced CCK secretion. CONCLUSION: The present study demonstrated that WPD has an ability to stimulate CCK secretion in vitro and in vivo, and determined that peptide RYIVPL in WPD could stimulate CCK secretion through CaSR. © 2023 Society of Chemical Industry.


Asunto(s)
Colecistoquinina , Triticum , Ratones , Animales , Colecistoquinina/metabolismo , Triticum/metabolismo , Línea Celular , Péptidos/farmacología , Receptores Sensibles al Calcio/metabolismo , Digestión
14.
Food Chem ; 440: 138139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134830

RESUMEN

The fragile membranes of liposomes limit their application by the food industry. In this study, we hypothesized that interactions between fatty acids with different chain lengths and phospholipids might enhance liposome stability. Decanoic acid modified liposomes (Lipo-DA) and stearic acid modified liposomes (Lipo-SA) were fabricated for encapsulation of hydrophilic peptides. Fluorescence spectroscopy and FTIR analysis showed molecular interactions existed between alkyl chains and phospholipids, resulting in greater compactness and hydrophobicity of the membranes in Lipo-DA and Lipo-SA. This led to a reduction in melting point characterized by differential scanning calorimetry analysis. Lipo-DA and Lipo-SA could delay the release of hydrophilic peptides compared with unmodified liposomes in simulated digestion. Moreover, Lipo-DA showed better stability during storage, while Lipo-SA exhibited precipitation, resulting in the lowest peptide retention. Our study showed that decanoic acid is suitable to enhance the stability of liposomes, although this approach has yet to be tested in food products.


Asunto(s)
Ácidos Grasos , Liposomas , Liposomas/química , Fosfolípidos , Ácidos Decanoicos , Péptidos
15.
Food Chem X ; 19: 100793, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780315

RESUMEN

The effect of ultrasonic treatment on the structure, morphology and antioxidant activity of highland barley ß-glucan (HBG) was investigated. Ultrasonic treatment for 30 min was demonstrated to improve the aqueous solubility of HBG, leading to a decrease in turbidity. Meanwhile, moderate ultrasound was found to obviously reduce the particle size distribution of HBG, and transform the entangled HBG molecules into flexible and extended chains, which reaggregated to form larger aggregates under long-time ultrasonication. The in vitro antioxidant capacity of HBG treated by ultrasonic first increased and then decreased compared to native HBG. Congo red complexation analysis indicated the existence of helix structure in HBG, which was untwisted after ultrasonic treatment. Furthermore, ultrasound treatment influenced the glucopyranose on HBG, which weakened the intramolecular hydrogen bond of HBG. The microscopic morphology showed that the spherical aggregates in native HBG solution were disaggregated and the untangled HBG chains reaggregated with excessive ultrasonication.

16.
Biomolecules ; 13(9)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759772

RESUMEN

Cholecystokinin (CCK) can make the human body feel full and has neurotrophic and anti-inflammatory effects. It is beneficial in treating obesity, Parkinson's disease, pancreatic cancer, and cholangiocarcinoma. Traditional biological experiments are costly and time-consuming when it comes to finding and identifying novel CCK-secretory peptides, and there is an urgent need to develop a new computational method to predict new CCK-secretory peptides. This study combines the transfer learning method with the SMILES enumeration data augmentation strategy to solve the data scarcity problem. It establishes a fusion model of the hierarchical attention network (HAN) and bidirectional long short-term memory (BiLSTM), which fully extracts peptide chain features to predict CCK-secretory peptides efficiently. The average accuracy of the proposed method in this study is 95.99%, with an AUC of 98.07%. The experimental results show that the proposed method is significantly superior to other comparative methods in accuracy and robustness. Therefore, this method is expected to be applied to the preliminary screening of CCK-secretory peptides.


Asunto(s)
Colecistoquinina , Aprendizaje Automático , Humanos , Péptidos/farmacología , Receptores de Colecistoquinina
17.
J Sci Food Agric ; 103(15): 7869-7876, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37467368

RESUMEN

BACKGROUND: The satiety hormone cholecystokinin (CCK) plays an important role in food intake inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that induce CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of highland barley protein digest (HBPD) to stimulate CCK secretion in vitro and in vivo and identify the responsible peptide sequences. RESULTS: HBPD was prepared by in vitro gastrointestinal digestion model. Peptides of <1000 Da in HBPD accounted for 82%. HBPD was rich in essential amino acids Leu, Phe and Val, but lack in sulfur amino acids Met and Cys. HBPD treatment at a concentration of 5 mg mL-1 significantly stimulated CCK secretion from enteroendocrine STC-1 cells (P < 0.05). Moreover, oral gavage with HBPD in mice significantly increased plasma CCK level. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion and peptide sequence was determined by ultra-performance liquid chromatography-tandem mass spectrometry. Two novel CCK-releasing peptides, PDLP and YRIVPL, were pointed out for their outstanding CCK secretagogue activity. CONCLUSION: This study demonstrated for the first time that HBPD had an ability to stimulate CCK secretion in vitro and in vivo and determined the bioactive peptides exerting CCK secretagogue activity in HBPD. © 2023 Society of Chemical Industry.


Asunto(s)
Colecistoquinina , Hordeum , Ratones , Animales , Colecistoquinina/metabolismo , Hordeum/metabolismo , Secretagogos , Péptidos/farmacología , Proteínas , Digestión
18.
J Sci Food Agric ; 103(14): 7021-7029, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37402232

RESUMEN

BACKGROUND: Quinoa protein is enriched with a wide range of amino acids, including all nine essential amino acids necessary for the human body, and in appropriate proportions. However, as the main ingredient of gluten-free food, it is difficult for quinoa to form a certain network structure for lack of gluten protein. The aim of this work was to enhance the gel properties of quinoa protein. Therefore, the texture characteristics of quinoa protein treated with different ultrasound intensities coupled with transglutaminase (TGase) were investigated. RESULTS: The gel strength of quinoa protein gel increased markedly by 94.12% with 600 W ultrasonic treatment, and the water holding capacity increased from 56.6% to 68.33%. The gel solubility was reduced and free amino content increased the apparent viscosity and the consistency index. Changes in the free sulfhydryl group and hydrophobicity indicated that ultrasound stretched protein molecules and exposed active sites. The enhanced intrinsic fluorescence intensity at 600 W demonstrated that ultrasonic treatment affected the conformation of quinoa protein. New bands emerged in sodium dodecylsulfate-polyacrylamide gel electrophoresis indicating that high-molecular-weight polymers were generated through TGase-mediated isopeptide bonds. Furthermore, scanning electron microscopy showed that the gel network structure of TGase-catalyzed quinoa protein was more uniform and denser, thereby improving the gel quality of quinoa protein. CONCLUSION: The results suggested that high-intensity ultrasound combined with TGase would be an effective way to develop higher-quality quinoa protein gel. © 2023 Society of Chemical Industry.


Asunto(s)
Chenopodium quinoa , Humanos , Chenopodium quinoa/química , Calor , Transglutaminasas/química , Glútenes/química , Solubilidad
19.
Food Funct ; 14(16): 7469-7477, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37489980

RESUMEN

Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.


Asunto(s)
Colecistoquinina , Fagopyrum , Colecistoquinina/metabolismo , Fagopyrum/metabolismo , Péptidos , Proteínas , Digestión
20.
Food Chem ; 415: 135763, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870208

RESUMEN

Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Antioxidantes/química , Chenopodium quinoa/química , Microondas , Calefacción , Proteínas , Digestión , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA