Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812171

RESUMEN

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Asunto(s)
Carbón Orgánico , Medicamentos Herbarios Chinos , Hemostáticos , Ratas Sprague-Dawley , Sanguisorba , Animales , Ratas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Hemostáticos/farmacología , Hemostáticos/química , Sanguisorba/química , Carbón Orgánico/química , Masculino , Culinaria , Coagulación Sanguínea/efectos de los fármacos , Humanos
2.
Kaohsiung J Med Sci ; 37(9): 784-794, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34002462

RESUMEN

A variety of microRNAs (miRNAs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, the role of miR-10a-5p in the progression of HCC remains unclear. Therefore, the purpose of this study was to determine the role of miR-10a-5p in the development of HCC and the possible molecular mechanism. miR-10a-5p expression in HCC tissues and plasma from patients was detected by quantitative real-time polymerase chain reaction. Migratory changes in HCC cells were detected after the overexpression of miR-10a-5p. Epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Finally, through luciferase assay and rescue experiments, the mechanism by which miR-10a-5p regulates its downstream gene, human spindle and kinetochore-associated complex subunit 1, SKA1 and the interaction between these molecules in the development of HCC were determined. The expression of miR-10a-5p was markedly downregulated in HCC tissues, cell lines, and plasma. The overexpression of miR-10a-5p significantly inhibited the migration, invasion, and EMT of HCC cells. Furthermore, SKA1 was shown to be a downstream gene of miR-10a-5p. SKA1 silencing had the same effect as miR-10a-5p overexpression in HCC. In particular, the overexpression of SKA1 reversed the inhibitory effects of miR-10a-5p in HCC. Taken together, low miR-10a-5p expression is associated with HCC progression. miR-10a-5p inhibits the malignant development of HCC by negatively regulating SKA1.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas Cromosómicas no Histona/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/fisiología , Metástasis de la Neoplasia/genética , Adolescente , Carcinoma Hepatocelular/metabolismo , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , MicroARNs/metabolismo
3.
Int Immunopharmacol ; 14(4): 629-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23041296

RESUMEN

The tumor necrosis factor superfamily (TNFSF) proteins are cytokines involved in many biological processes. In this study, the TNF superfamily member 14 (TNFSF14, LIGHT) has been isolated from zebrafish Danio rerio (designated zLIGHT). The full-length open reading frame (ORF) of zLIGHT cDNA consists of 708 bp encoding a protein of 235 amino acids. The zLIGHT open reading frame (ORF) genomic sequence consists of three introns and four exons, is about 9.9 kb in size. Real-time quantitative PCR (qPCR) analysis suggested that zLIGHT was predominantly expressed in zebrafish spleen. The soluble LIGHT (zsLIGHT) had been cloned into the pSUMO vector, SDS-PAGE and Western blotting analysis confirmed that the recombinant protein SUMO-zsLIGHT was efficiently expressed in Escherichia coli BL21 (DE3). Laser scanning confocal microscopy analysis showed that SUMO-zsLIGHT could bind to its receptors on T cells. LIGHT is involved in many important biological effects, including up-regulating proinflammatory chemokines, cytokines, inducing cell death, apoptosis, and enhancing T cell survival. Zebrafish may conduct as a model animal for further research on LIGHT.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA