Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Physiol Plant ; 176(3): e14382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859666

RESUMEN

Flowering is a major developmental transition in plants, but asynchronous flowering hinders the utilization of wild cotton relatives in breeding programs. We performed comparative transcriptomic profiling of early- and late-flowering Gossypium hirsutum genotypes to elucidate genetic factors influencing reproductive timing. Shoot apices were sampled from the photoperiod-sensitive landrace G. hirsutum purpurascens (GhP) and early-maturing variety ZhongMianSuo (ZMS) at five time points following the emergence of sympodial nodes. RNA-sequencing revealed extensive transcriptional differences during floral transition. Numerous flowering-associated genes exhibited genotype-specific expression, including FLOWERING LOCUS T (FT) homologs upregulated in ZMS. FT-interacting factors like SOC1 and CO-like also showed higher expression in ZMS, implicating florigen pathways in early flowering. Additionally, circadian clock and light signalling components were misregulated between varieties, suggesting altered photoperiod responses in GhP. Weighted co-expression network analysis specifically linked a module enriched for circadian-related genes to GhP's late flowering. Through an integrated transcriptome analysis, we defined a regulatory landscape of reproductive phase change in cotton. Differentially expressed genes related to photoperiod, circadian clock, and light signalling likely contribute to delayed flowering in wild cottons. Characterization of upstream flowering regulators will enable modifying photoperiod sensitivity and expand germplasm use for cotton improvement. This study provides candidate targets for elucidating interactive mechanisms that control cotton flowering time across diverse genotypes.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Gossypium , Fotoperiodo , Transcriptoma , Gossypium/genética , Gossypium/fisiología , Flores/genética , Flores/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica , Reproducción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genotipo
2.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654158

RESUMEN

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa , Gossypium , Nitrógeno , Proteínas de Plantas , Duplicación de Gen , Genes de Plantas , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Gossypium/genética , Gossypium/metabolismo , Familia de Multigenes , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Adv Res ; 58: 31-43, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37236544

RESUMEN

INTRODUCTION: Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES: In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS: Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS: Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION: Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Fitomejoramiento , Genómica , Hojas de la Planta
4.
Physiol Plant ; 175(6): e14074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148226

RESUMEN

Priming-mediated stress tolerance in plants stimulates defense mechanisms and enables plants to cope with future stresses. Seed priming has been proven effective for tolerance against abiotic stresses; however, underlying genetic mechanisms are still unknown. We aimed to assess upland cotton genotypes and their transcriptional behaviors under salt priming and successive induced salt stress. We pre-selected 16 genotypes based on previous studies and performed morpho-physiological characterization, from which we selected three genotypes, representing different tolerance levels, for transcriptomic analysis. We subjected these genotypes to four different treatments: salt priming (P0), salt priming with salinity dose at 3-true-leaf stage (PD), salinity dose at 3-true-leaf stage without salt priming (0D), and control (CK). Although the three genotypes displayed distinct expression patterns, we identified common differentially expressed genes (DEGs) under PD enriched in pathways related to transferase activity, terpene synthase activity, lipid biosynthesis, and regulation of acquired resistance, indicating the beneficial role of salt priming in enhancing salt stress resistance. Moreover, the number of unique DEGs associated with G. hirsutum purpurascens was significantly higher compared to other genotypes. Coexpression network analysis identified 16 hub genes involved in cell wall biogenesis, glucan metabolic processes, and ribosomal RNA binding. Functional characterization of XTH6 (XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE) using virus-induced gene silencing revealed that suppressing its expression improves plant growth under salt stress. Overall, findings provide insights into the regulation of candidate genes in response to salt stress and the beneficial effects of salt priming on enhancing defense responses in upland cotton.


Asunto(s)
Perfilación de la Expresión Génica , Tolerancia a la Sal , Tolerancia a la Sal/genética , Estrés Salino/genética , Estrés Fisiológico/genética , Gossypium/genética , Regulación de la Expresión Génica de las Plantas
5.
Antioxidants (Basel) ; 12(2)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36830024

RESUMEN

Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 µM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves' absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions.

6.
Theor Appl Genet ; 136(2): 27, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810826

RESUMEN

KEY MESSAGE: Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Plantones/genética , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Front Plant Sci ; 13: 1051080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531355

RESUMEN

Phosphorus (P) is an essential macronutrient required for fundamental processes in plants. Trait plasticity is crucial for plant adaptation to environmental change. Variations in traits underlie diverse phosphorus (P) acquisition strategies among plants. Nevertheless, how the intraspecific plasticity and integration of morphological traits contribute to Phosphorus-Use-Efficiency (PUE) in cotton is unknown. In this study, 25 morphological traits were evaluated in 384 cotton genotypes grown with low P (LP, 10µmol. L-1) and normal nutrition (CK, 500µmol. L-1) to assess the genetic variability of morphological traits and their relationship to phosphorus use efficiency. Results revealed a large genetic variation in mostly morphological traits under low P. Significant enhancement in root traits and phosphorus efficiency-related traits like PUE was observed at LP as compared to CK conditions. In response to low P availability, cotton genotypes showed large plasticity in shoot and total dry biomass, phosphorus, and nitrogen efficiency-related traits (i.e., phosphorus/nitrogen use efficiency, phosphorus/nitrogen uptake efficiency), and most root traits, but a limited response in root dry biomass, taproot length, root surface area, root volume, and SPAD value. In addition, significant correlations were observed between PUtE (phosphorus uptake efficiency), NUE (nitrogen use efficiency), TDB (total dry biomass), and RTD (root tissue density) with PUE under both P supply level and phosphorus stress index, which may be a key indicator for improving PUE under LP conditions. Most root traits are most affected by genotypes than nutrition level. Conserved PUE is more affected by the nutrition level than the genotype effect. Principal component analysis depicted the comprehensive indicators under two P supply conditions were mainly reflected in root-related traits and morphological indicators such as dry matter biomass. These results indicate that interspecific variations exist within these cotton genotypes and traits. Our study provides suggestions for future research to enhance the ability of the earth system model to predict how crops respond to environmental interference and provide target quality for cotton breeding in phosphorus-deficient areas.

8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430741

RESUMEN

The NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY) transports various substrates, including nitrogen (N), which is essential for plant growth and development. Although many NPF homologs have been identified in various plants, limited studies on these proteins have been reported in cotton. This study identified 75, 71, and 150 NPF genes in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively, via genome-wide analyses. The phylogenetic tree indicated that cotton NPF genes are subdivided into eight subgroups, closely clustered with Arabidopsis orthologues. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. Moreover, the collinearity analysis showed that whole-genome duplication event has played an important role in the expansion and diversification of the NPF gene family in cotton. According to the transcriptome and qRT-PCR analyses, several GhNPFs were induced by the nitrogen deficiency treatment. Additional functional experiments revealed that virus-induced silencing (VIGS) of the GhNPF6.14 gene affects the growth and N absorption and accumulation in cotton. Thus, this study lays the foundation for further functional characterization of NPF genes in cotton.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/metabolismo , Filogenia , Genoma de Planta , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrógeno/metabolismo
9.
Antioxidants (Basel) ; 11(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009240

RESUMEN

Silicon (Si) could alleviate the adverse effect of salinity in many crops, but the effect in cotton remains unclear. In this study, we evaluated the role of Si in regulating the salt stress tolerance of cotton by analyzing the induced morpho-physiological changes. A hydroponic experiment was conducted by using contrasting salt-tolerant cotton genotypes (sensitive Z0102; tolerant Z9807) and four treatments (CK, control; CKSi, 0.4 mM Si; NaCl, 150 mM NaCl; NaClSi, 150 mM NaCl+0.4 mM Si). The results showed that Si significantly enhanced the net photosynthesis rate and improved the growth of cotton seedling under salt stress in both salt-sensitive and salt-tolerant genotypes. Exogenous Si significantly reduced the accumulation of reactive oxygen species (ROS) and decreased the malondialdehyde (MDA) content in salt-stressed cotton. In addition, the application of Si up-regulated the expression of CAT1, SODCC and POD, and significantly enhanced the antioxidant enzymatic activities, such as catalase (CAT) and peroxidase (POD), of the salt-stressed cotton seedlings. Further, Si addition protected the integrity of the chloroplast ultrastructure, including key enzymes in photosynthesis such as ferredoxin-NADP reeducates (FNR), ATP synthase (Mg2+Ca2+-ATPase) and ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO), and the structure and function of the photosynthetic apparatus PSII from salt stress. Moreover, Si significantly increased the effective stomatal density and stomatal aperture in the salt-stressed cotton seedlings. Taken together, Si could likely ameliorate adverse effects of salt stress on cotton by improving the ROS scavenging ability and photosynthetic capacity.

10.
Crop Sci ; 61(4): 2745-2758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413536

RESUMEN

Xinjiang is currently the most dominant cotton (Gossypium hirsutum L.)-growing region in China and possesses abundant radiation resource. The cultivation techniques such as wide and narrow row-spacing and high density are widely adopted to obtain high cotton yield in the region. However, the region is facing some problems including poor light transmittance in the field and low exploitation for light resources under the current planting pattern which impedes further growth in cotton yields. Therefore, it is essential to develop some cultivation practices to increase radiation use efficiency (RUE) and cotton yields in Xinjiang. Here we conducted a field experiment to quantify the effects of row spacing pattern and plant density on RUE, intercepted photosynthetically active radiation from May to August (IRAR5-8), and lint yield during 2017 and 2018. In this study, we designed two row-spacing configurations (R1, wide and narrow configuration, 66 cm + 10 cm; R2, uniform row-spacing configuration, 76 cm) and six plant densities (4.5, 9.0, 13.5, 18.0, 22.5, and 27.0 plants m-2). The RUE, lint yield, and number of bolls were higher in R2 than R1 by 4.1-5.9, 2.5-4.8, and 9.1-14.2%, respectively. The RUE significantly increased with plant density, but lint yield stabilized at 18.0 plants m-2. Moreover, RUE had more significant positive effects on boll number and lint yield. Overall, we found that R2 combined with optimal plant densities (13.5-18.0 plants m-2) would be an effective strategy to achieve higher RUE and yields in the Xinjiang cotton system.

11.
Plants (Basel) ; 10(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379380

RESUMEN

Chemical defoliation is an essential agricultural practice in cotton production for mechanic harvesting. Thidiazuron (TDZ) is the active ingredient of the chemical defoliant used on cotton. So far, few studies havefocused on the method of identifying the sensitivity of cotton cultivars to TDZ. Therefore, a greenhouse soil culture experiment was performed by using two widely cultivatedupland cotton cultivars CRI 49 and CRI 12 treated with seven different concentrations (0, 100, 200, 300, 400, 500, and 1000 mg L-1) of TDZ at the seedling stage to establish a screening system. Principal component analysis and the membership function value (MFV) method was used to analyze the physiological and phenotypic characters, including abscission rate, amino acids content, net photosynthetic rate (Pn), etc. Finally, we developed a mathematical evaluation model, selected 100 mg L-1 TDZ as the optimal concentration and identified reliable characters net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) to evaluate cotton leaf abscission sensitivity. These results also confirmed that CRI 12 was more sensitive to TDZ than CRI 49. This is the first time using a mathematical evaluation method to evaluate the cotton leaf abscission sensitivity triggered by TDZ at the seedling stage and the results were also confirmed in the field experiment. Furthermore, it will be valuable that MFV method is applied to stress sensitivity evaluation in other crop species under stress environment.

12.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326540

RESUMEN

Chemical defoliation is an important part of cotton mechanical harvesting, which can effectively reduce the impurity content. Thidiazuron (TDZ) is the most used chemical defoliant on cotton. To better clarify the mechanism of TDZ promoting cotton leaf abscission, a greenhouse experiment was conducted on two cotton cultivars (CRI 12 and CRI 49) by using 100 mg L-1 TDZ at the eight-true-leaf stage. Results showed that TDZ significantly promoted the formation of leaf abscission zone and leaf abscission. Although the antioxidant enzyme activities were improved, the reactive oxygen species and malondialdehyde (MDA) contents of TDZ increased significantly compared with CK (water). The photosynthesis system was destroyed as net photosynthesis (Pn), transpiration rate (Tr), and stomatal conductance (Gs) decreased dramatically by TDZ. Furthermore, comparative RNA-seq analysis of the leaves showed that all of the photosynthetic related genes were downregulated and the oxidation-reduction process participated in leaf shedding caused by TDZ. Consequently, a hypothesis involving possible cross-talk between ROS metabolism and photosynthesis jointly regulating cotton leaf abscission is proposed. Our findings not only provide important insights into leaf shedding-associated changes induced by TDZ in cotton, but also highlight the possibility that the ROS and photosynthesis may play a critical role in the organ shedding process in other crops.


Asunto(s)
Defoliantes Químicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gossypium/metabolismo , Compuestos de Fenilurea/farmacología , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Tiadiazoles/farmacología , Carbohidratos/análisis , Clorofila/análisis , Fibra de Algodón , Defoliantes Químicos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Gossypium/efectos de los fármacos , Gossypium/genética , Malondialdehído/análisis , Microscopía Electrónica de Rastreo , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/ultraestructura , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo
13.
Plants (Basel) ; 9(4)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260233

RESUMEN

Increasing soil salinity suppresses both productivity and fiber quality of cotton, thus, an appropriate management approach needs to be developed to lessen the detrimental effect of salinity stress. This study assessed two cotton genotypes with different salt sensitivities to investigate the possible role of nitrogen supplementation at the seedling stage. Salt stress induced by sodium chloride (NaCl, 200 mmol·L-1) decreased the growth traits and dry mass production of both genotypes. Nitrogen supplementation increased the plant water status, photosynthetic pigment synthesis, and gas exchange attributes. Addition of nitrogen to the saline media significantly decreased the generation of lethal oxidative stress biomarkers such as hydrogen peroxide, lipid peroxidation, and electrolyte leakage ratio. The activity of the antioxidant defense system was upregulated in both saline and non-saline growth media as a result of nitrogen application. Furthermore, nitrogen supplementation enhanced the accumulation of osmolytes, such as soluble sugars, soluble proteins, and free amino acids. This established the beneficial role of nitrogen by retaining additional osmolality to uphold the relative water content and protect the photosynthetic apparatus, particularly in the salt-sensitive genotype. In summary, nitrogen application may represent a potential strategy to overcome the salinity-mediated impairment of cotton to some extent.

14.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197292

RESUMEN

Gossypium hirsutum L., is a widely cultivated cotton species around the world, but its production is seriously threatened by its susceptibility to chilling stress. Low temperature affects its germination, and the underlying molecular mechanisms are rarely known, particularly from a transcriptional perspective. In this study, transcriptomic profiles were analyzed and compared between two cotton varieties, the cold-tolerant variety KN27-3 and susceptible variety XLZ38. A total of 7535 differentially expressed genes (DEGs) were identified. Among them, the transcripts involved in energy metabolism were significantly enriched during germination based on analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as glycolysis/gluconeogenesis, tricarboxylic acid cycle (TCA cycle), and glyoxylate cycle (GAC). Results from further GO enrichment analysis show the earlier appearance of DNA integration, meristem growth, cotyledon morphogenesis, and other biological processes in KN27-3 compared with XLZ38 under chilling conditions. The synthesis of asparagine, GDP-mannose, and trehalose and the catabolic process of raffinose were activated. DEGs encoding antioxidants (spermidine) and antioxidase (CAT1, GPX4, DHAR2, and APX1) were much more up-regulated in embryos of KN27-3. The content of auxin (IAA), cis-zeatin riboside (cZR), and trans-zeatin riboside (tZR) in KN27-3 are higher than that in XLZ38 at five stages (from 12 h to 54 h). GA3 was expressed at a higher level in KN27-3 from 18 h to 54 h post imbibition compared to that in XLZ38. And abscisic acid (ABA) content of KN27-3 is lower than that in XLZ38 at five stages. Results from hormone content measurements and the related gene expression analysis indicated that IAA, CTK, and GA3 may promote germination of the cold-tolerant variety, while ABA inhibits it. These results expand the understanding of cottonseed germination and physiological regulations under chilling conditions by multiple pathways.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Gossypium , Semillas , Transcriptoma/fisiología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo
15.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098345

RESUMEN

Nitrogen (N) is the most important limiting factor for cotton production worldwide. Genotype-dependent ability to cope with N shortage has been only partially explored in cotton, and in this context, the comparison of molecular responses of cotton genotypes with different nitrogen use efficiency (NUE) is of particular interest to dissect the key molecular mechanisms underlying NUE. In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two cotton genotypes differing in NUE (CCRI-69, N-efficient, and XLZ-30, N-inefficient) under N starvation and resupply treatments. The results showed that a large genetic variation existed in differentially expressed genes (DEGs) related to amino acid, carbon, and nitrogen metabolism between CCRI-69 and XLZ-30. Further analysis of metabolic changes in cotton genotypes under N resupply showed that nitrogen metabolism and aromatic amino acid metabolism pathways were mainly enriched in CCRI-69 by regulating carbon metabolism pathways such as starch and sucrose metabolism, glycolysis/gluconeogenesis, and pentose phosphate pathway. Additionally, we performed an expression network analysis of genes related to amino acid, carbon, and nitrogen metabolism. In total, 75 and 33 genes were identified as hub genes in shoots and roots of cotton genotypes, respectively. In summary, the identified hub genes may provide new insights into coordinating carbon and nitrogen metabolism and improving NUE in cotton.


Asunto(s)
Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Gossypium/genética , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Metabolismo Energético/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genotipo , Gossypium/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
16.
Plants (Basel) ; 9(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075340

RESUMEN

Cotton production is highly sensitive to nitrogen (N) fertilization, whose excessive use is responsible for human and environmental problems. Lowering N supply together with the selection of N-efficient genotypes, more able to uptake, utilize, and remobilize the available N, could be a challenge to maintain high cotton production sustainably. The current study aimed to explore the intraspecific variation among four cotton genotypes in response to various N supplies, in order to identify the most distinct N-efficient genotypes and their nitrogen use efficiency (NUE)-related traits in hydroponic culture. On the basis of shoot dry matter, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting N metabolism, uptake (NUpE), and utilization efficiency (NUtE). Overall, our results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE. Conversely, tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE. The remobilization of N from the shoot to roots by high shoot GS activity may be a strategy to enhance root total soluble protein, which improves root growth for N uptake and NUE. In future, multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.

17.
J Sci Food Agric ; 100(6): 2761-2773, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32020619

RESUMEN

BACKGROUND: Although nitrogen (N) availability is a major determinant of cotton production, little is known about the importance of plants' preference for ammonium versus nitrate for better growth and nitrogen use efficiency (NUE). We aimed to assess the growth, physiology, and NUE of contrasting N-efficient cotton genotypes (Z-1017, N-efficient and GD-89, N-inefficient) supplied with low and high concentrations of ammonium- and nitrate-N. RESULTS: The results revealed that ammonium fed plants showed poor root growth, lower dry biomass, N content, leaf chlorophyll and gas exchange than those under nitrate irrespective of the concentration. However, the highest N uptake and utilization efficiency were obtained with nitrate fed plants, which also resulted in the highest dry biomass, N content, leaf chlorophyll and gas exchange as well as root growth. The results further confirmed that N-efficient (Z-1017) genotype performed better under both N sources, showing more flexibility to contrasting N condition by increasing growth and NUE in either source of N. Moreover, multivariate analysis showed a strong relationship of root morphological traits with N utilization efficiency, suggesting the physiological importance of roots over shoots in response to low nitrate concentration. CONCLUSION: Thus, it was confirmed that nitrate-N is superior to ammonium-N and the use of nitrate and N-efficient genotype is the best option for optimum cotton growth and NUE. Further, field evaluation is required to confirm the hypothesis that nitrate is a preferred N source for better cotton production and NUE. © 2020 Society of Chemical Industry.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Genotipo , Gossypium/metabolismo , Nitratos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
18.
Plants (Basel) ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024197

RESUMEN

Drought is one of the most important abiotic stresses and hampers many plant physiological processes under suboptimal nitrogen (N) concentration. Seedling tolerance to drought stress is very important for optimum growth and development, however, the enhancement of plant stress tolerance through N application in cotton is not fully understood. Therefore, this study investigates the role of high N concentration in enhancing drought stress tolerance in cotton. A hydroponic experiment supplying low (0.25 mM) and high (5 mM) N concentrations, followed by 150 g L-1 polyethylene glycol (PEG)-induced stress was conducted in a growth chamber. PEG-induced drought stress inhibited seedling growth, led to oxidative stress from excessive malondialdehyde (MDA) generation, and reduced N metabolism. High N concentrations alleviated oxidative damage and stomatal limitation by increasing antioxidant enzymatic activities, leaf relative water content, and photosynthesis in cotton seedlings under drought stress. The results revealed that the ameliorative effects of high N concentration may be ascribed to the enhancement of N metabolizing enzymes and an increase in the amounts of osmoprotectants like free amino acids and total soluble protein. The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.

19.
Mol Genet Genomics ; 293(4): 831-843, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29423657

RESUMEN

Gossypium hirsutum L. is the most important fiber crop worldwide and contributes to more than 95% of global cotton production. Marker-assisted selection (MAS) is an effective approach for improving fiber quality, and quantitative trait loci (QTL) mapping of fiber quality traits is important for cotton breeding. In this study, a permanent intra-specific recombinant inbred line (RIL) population containing 137 families was used for fiber quality testing. Based on a previously reported high-density genetic map with an average marker distance of 0.63 cM, 186 additive QTLs were obtained for five fiber quality traits over five consecutive years, including 39 for fiber length (FL), 36 for fiber strength (FS), 50 for fiber uniformity (FU), 33 for micronaire (MC) and 28 for fiber elongation (FE). Three stable QTLs, qMC-A4-1, qMC-D2-3 and qFS-D9-1, were detected in four datasets, and another eight stable QTLs, qMC-A4-2, qMC-D11-2, qFU-A9-1, qFU-A10-4, qFS-D11-1, qFL-D9-2, qFL-D11-1 and qFE-A3-2, were detected in three datasets. The annotated genes in these 11 stable QTLs were collected, and these genes included many transcription factors with functions during fiber development. 33 QTL coincidence regions were found, and these involved nearly half of the total QTLs. Four chromosome regions containing at least 6 QTLs were promising for fine mapping. In addition, 41 pairs of epistatic QTLs (e-QTLs) were screened, including 6 for FL, 30 for FS, 2 for FU and 3 for MC. The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.


Asunto(s)
Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Endogamia , Sitios de Carácter Cuantitativo , Gossypium/metabolismo
20.
Mol Genet Genomics ; 293(1): 249-264, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29052764

RESUMEN

The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v1 mutant. The GhChlI mutation not only provides a tool for understanding the associations of CHLI protein function and the chlorophyll biosynthesis pathway but also has implications for cotton breeding.


Asunto(s)
Clorofila/genética , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Clorofila/biosíntesis , Cloroplastos/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Genoma de Planta , Fenotipo , Hojas de la Planta/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA