RESUMEN
Exploring structural phase transitions and luminescence mechanisms in Zero-dimensional (0D) metal halides poses significant challenges, that are crucial for unlocking the full potential of tunable optical properties and diversifying their functional capabilities. Herein, we have designed two inter-transformable 0D Cu(I)-based metal halides, namely (C19H18P)2CuI3 and (C19H18P)2Cu4I6, through distinct synthesis conditions utilizing identical reactants. Their optical properties and luminescence mechanisms were systematically elucidated by experiments combined with density functional theory calculations. The bright cyan-fluorescent (C19H18P)2CuI3 with high photoluminescence quantum yield (PLQY) of 77% is attributed to the self-trapped exciton emission. Differently, the broad yellow-orange fluorescence of (C19H18P)2Cu4I6 displays a remarkable PLQY of 83%. Its luminescence mechanism is mainly attributed to the combined effects of metal/halide-to-ligand charge transfer and cluster-centered charge transfer, which effects stem from the strong Cu-Cu bonding interactions in the (Cu4I6)2- clusters. Moreover, (C19H18P)2CuI3 and (C19H18P)2Cu4I6 exhibit reversible structural phase transitions. The elucidation of the phase transitions mechanism has paved the way for an unforgeable anti-counterfeiting system. This system dynamically shifts between cyan and yellow-orange fluorescence, triggered by the phase transitions, bolstering security and authenticity. This work enriches the luminescence theory of 0D metal halides, offering novel strategies for optical property modulation and fostering optical applications.
RESUMEN
The low immunogenicity of tumors, along with the abnormal structural and biochemical barriers of tumor-associated vasculature, impedes the infiltration and function of effector T cells at the tumor site, severely inhibiting the efficacy of antitumor immunotherapy. In this study, a cobaloxime catalyst and STING agonist (MSA-2)-coloaded Wurster-type covalent organic framework (Co-TB COF-M) with internal electron transfer-enhanced catalytic capacity was developed as a COF-based immune activator. The covalently anchored cobaloxime adjusts the energy band structure of TB COF and provides it with good substrate adsorption sites, enabling it to act as an electron transmission bridge between the COF and substrate in proton reduction catalytic reactions. This property significantly enhances the sonodynamic catalytic performance. Under sono-irradiation, Co-TB COF-M can produce a substantial amount of reactive oxygen species (ROS) to induce Gasdermin D-mediated pro-inflammatory pyroptosis, thereby effectively enhancing the immunogenicity of tumors. Furthermore, MSA-2 is specifically released in response to ROS at the tumor site, minimizing the off-target side effects. More importantly, Co-TB COF-induced STING activation normalizes tumor vasculature and increases the expression of endothelial T cell adhesion molecules, which greatly enhance the infiltration and function of effector T cells. Thus, Co-TB COF-M as an immune activator could remold the tumor microenvironment, leading to increased infiltration and an improved function of T cells for immunotherapy.
Asunto(s)
Estructuras Metalorgánicas , Catálisis , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Humanos , Transporte de Electrón , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Inmunoterapia , Piroptosis/efectos de los fármacos , Línea Celular TumoralRESUMEN
Human society is facing increasingly serious problems of environmental pollution and energy shortage, and up to now, achieving high NH3-SCR activity at ultra-low temperatures (<150 °C) remains challenging for the V-based catalysts with V content below 2%. In this study, the monoatomic V-based catalyst under the weak current-assisted strategy can completely convert NOx into N2 at ultra-low temperature with V content of 1.36%, which shows the preeminent turnover frequencies (TOF145 °C = 1.97×10-3 s-1). The improvement of catalytic performance is mainly attributed to the enhancement catalysis of weak current (ECWC) rather than electric field, which significantly reduce the energy consumption of the catalytic system by more than 90%. The further mechanism research for the ECWC based on a series of weak current-assisted characterization means and DFT calculations confirms that migrated electrons mainly concentrate around the V single atoms and increase the proportion of antibonding orbitals, which make the V-O chemical bond weaker (electron scissors effect) and thus accelerate oxygen circulation. The novel current-assisted catalysis in the present work can potentially apply to other environmental and energy fields.
RESUMEN
Elaborated structural modulation of Pt-based artificial nanozymes can efficiently improve their catalytic activity and expand their applications in clinical diagnosis and biochemical sensing. Herein, a highly efficient dual-site peroxidase mimic composed of highly dispersed Pt and Mo atoms is reported. The obtained Mo-Pt/CeO2 exhibits exceptional peroxidase-like catalytic activity, with a Vmax as high as 34.16 × 10-8 m s-1, which is 37.5 times higher than that of the single-site counterpart. Mechanism studies suggest that the Mo atoms can not only serve as adsorption and activation sites for the H2O2 substrate but also regulate the charge density of Pt centers to promote the generation ability of â¢OH. As a result, the synergistic effect between the dual active sites significantly improves the catalytic efficiency. Significantly, the application of the Mo-Pt/CeO2 catalyst's excellent peroxidase-like activity is extended to various biochemical detection applications, including the trace detection of glucose and cysteine, as well as the assessment of antioxidants' antioxidant capacity. This work reveals the great potential of rational design dual-site active centers for constructing high-performance artificial nanozymes.
RESUMEN
Invasive tumors are difficult to be completely resected in clinical surgery due to the lack of clear resection margins, which greatly increases the risk of postoperative recurrence. However, chemotherapy and radiotherapy as the traditional means of postoperative adjuvant therapy, are limited in postoperative applications, such as multi-drug resistance and low sensitivity, etc. Therefore, an engineered magnesium alloy rod is designed as a postoperative implant to completely remove postoperative residual tumor tissue and inhibit tumor recurrence by gas and mild magnetic hyperthermia therapy (MMHT). As a reactive metal, magnesium alloy responds to the acidic tumor microenvironment by continuously generating hydrogen. The in-situ generation of hydrogen not only protects the surrounding normal tissue, but also enables the magnesium alloy to achieve MMHT under low-intensity alternating magnetic field (AMF). Furthermore, the numerous reactive oxygen species (ROS) produced by heat stress will combine with nitric oxide (NO) generated in situ, to produce more toxic reactive nitrogen species (RNS) storm. In summary, engineered magnesium alloy can completely remove residual tumor tissue and inhibit tumor recurrence by MMHT and RNS storm under low-intensity AMF, and the biodegradability of magnesium alloy makes great potential for clinical application.
RESUMEN
Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.
RESUMEN
The sulfate radical (SO4â¢-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4â¢- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.
Asunto(s)
Cerio , Oro , Nanocompuestos , Periodontitis , Sulfatos , Cerio/química , Cerio/farmacología , Animales , Periodontitis/tratamiento farmacológico , Nanocompuestos/química , Oro/química , Sulfatos/química , Especies Reactivas de Oxígeno/metabolismo , Catálisis , Nanotubos/química , Antibacterianos/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Masculino , Ratones , Biopelículas/efectos de los fármacos , Porphyromonas gingivalis/efectos de los fármacosRESUMEN
The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27â mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11â mmol gcat. -1 h-1 for ethanol and 0.034â mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.
RESUMEN
Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating â¢O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to â¢O2- and â¢OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of â¢OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.
Asunto(s)
Vacunas contra el Cáncer , Cobre , Macrófagos , Estructuras Metalorgánicas , Piroptosis , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Ratones , Piroptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Cobre/química , Cobre/farmacología , Vacunas contra el Cáncer/química , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/química , Fagocitosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos BALB C , Eferocitosis , NanovacunasRESUMEN
The generally undesirable bandgap and electron-hole complexation of inorganic sonosensitizers limit the efficiency of reactive oxygen species (ROS) generation, affecting the effectiveness of sonodynamic therapy (SDT). Comparatively, the novel polyvinylpyrrolidone-modified copper bismuthate (PCBO) sonosensitizers are manufactured for a "three-step" SDT promotion. In brief, first, the strong hybridization between Bi 6s and O 2p orbitals in PCBO narrows the bandgap (1.83 eV), facilitating the rapid transfer of charge carriers. Additionally, nonequivalent [CuO4]6- layers reduce crystal symmetry, confer PCBO unique piezoelectricity, and improve electron-hole separation under ultrasonic (US) excitation. This allows PCBO to convert US energy into chemical energy to produce ROS, achieving the accumulation of abundant ROS, resulting in apoptosis and tumor suppression. Concurrently, PCBO also acts as a glutathione scavenger to reduce tumor antioxidant capacity and improve efficacy. To the best of authors understanding, this study reveals PCBO as an innovative piezoelectric sonosensitizer and provides a meaningful paradigm for designing energy conversion strategies for tumor suppression.
RESUMEN
The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.
Asunto(s)
Germinación , Oryza , Peroxisomas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Germinación/fisiología , Peroxisomas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Coenzima A Ligasas/metabolismo , Ácidos Indolacéticos/metabolismo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Cinamatos/metabolismoRESUMEN
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
RESUMEN
Subcellular compartmentalization of metabolic pathways plays a crucial role in metabolic engineering. The peroxisome has emerged as a highly valuable and promising compartment for organelle engineering, particularly in the fields of biological manufacturing and agriculture. In this review, we summarize the remarkable achievements in peroxisome engineering in yeast, the industrially popular biomanufacturing chassis host, to produce various biocompounds. We also review progress in plant peroxisome engineering, a field that has already exhibited high potential in both biomanufacturing and agriculture. Moreover, we outline various experimentally validated strategies to improve the efficiency of engineered pathways in peroxisomes, as well as prospects of peroxisome engineering.
Asunto(s)
Agricultura , Ingeniería Metabólica , Peroxisomas , Ingeniería Metabólica/métodos , Peroxisomas/metabolismo , Agricultura/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Plantas/metabolismo , Plantas/genéticaRESUMEN
Increasing cellular immunogenicity and reshaping the immune tumor microenvironment (TME) are crucial for antitumor immunotherapy. Herein, this work develops a novel single-atom nanozyme pyroptosis initiator: UK5099 and pyruvate oxidase (POx)-co-loaded Cu-NS single-atom nanozyme (Cu-NS@UK@POx), that not only trigger pyroptosis through cascade biocatalysis to boost the immunogenicity of tumor cells, but also remodel the immunosuppressive TME by targeting pyruvate metabolism. By replacing N with weakly electronegative S, the original spatial symmetry of the Cu-N4 electron distribution is changed and the enzyme-catalyzed process is effectively regulated. Compared to spatially symmetric Cu-N4 single-atom nanozymes (Cu-N4 SA), the S-doped spatially asymmetric single-atom nanozymes (Cu-NS SA) exhibit stronger oxidase activities, including peroxidase (POD), nicotinamide adenine dinucleotide (NADH) oxidase (NOx), L-cysteine oxidase (LCO), and glutathione oxidase (GSHOx), which can cause enough reactive oxygen species (ROS) storms to trigger pyroptosis. Moreover, the synergistic effect of Cu-NS SA, UK5099, and POx can target pyruvate metabolism, which not only improves the immune TME but also increases the degree of pyroptosis. This study provides a two-pronged treatment strategy that can significantly activate antitumor immunotherapy effects via ROS storms, NADH/glutathione/L-cysteine consumption, pyruvate oxidation, and lactic acid (LA)/ATP depletion, triggering pyroptosis and regulating metabolism. This work provides a broad vision for expanding antitumor immunotherapy.
Asunto(s)
Inmunoterapia , Piroptosis , Ácido Pirúvico , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Piroptosis/efectos de los fármacos , Humanos , Animales , Ratones , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Piruvato Oxidasa/metabolismo , Piruvato Oxidasa/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismoRESUMEN
The extracellular matrix (ECM) in the tumor microenvironment (TME) and upregulated immune checkpoints (ICs) on antitumor immune cells impede the infiltration and killing effect of T cells, creating an immunosuppressive TME. Herein, a cholesterol oxidase (CHO) and lysyl oxidase inhibitor (LOX-IN-3) co-delivery copper-dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol single-site nanozyme (Cu-DBCO/CL) was developed. The conjugated organic ligand and well-distributed Cu-O4 sites endow Cu-DBCO with unique redox capabilities, enabling it to catalyze O2 and H2O2 to ·O2- and ·OH. This surge of reactive oxygen species (ROS) leads to impaired mitochondrial function and insufficient ATP supply, impacting the function of copper-transporting ATPase-1 and causing dihydrolipoamide S-acetyltransferase oligomerization-mediated cuproptosis. Moreover, multiple ROS storms and glutathione peroxidase 4 depletion also induce lipid peroxidation and trigger ferroptosis. Simultaneously, the ROS-triggered release of LOX-IN-3 reshapes the ECM by inhibiting lysyl oxidase activity and further enhances the infiltration of cytotoxic T lymphocytes (CD8+ T cells). CHO-triggered cholesterol depletion not only increases ·OH generation but also downregulates the expression of ICs such as PD-1 and TIM-3, restoring the antitumor activity of tumor-infiltrating CD8+ T cells. Therefore, Cu-DBCO/CL exhibits efficient properties in activating a potent antitumor immune response by cascade-enhanced CD8+ T cell viability. More importantly, ECM remodeling and cholesterol depletion could suppress the metastasis and proliferation of the tumor cells. In short, this immune nanoremodeler can greatly enhance the infiltration and antitumor activity of T cells by enhancing tumor immunogenicity, remodeling ECM, and downregulating ICs, thus achieving effective inhibition of tumor growth and metastasis.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Proteína-Lisina 6-Oxidasa , Cobre , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Colesterol , Línea Celular Tumoral , Inmunoterapia , Microambiente TumoralRESUMEN
Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a "confined auto-redox" strategy is reported to fix CeO2-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO2@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.
RESUMEN
Electrocatalytic nitrogen reduction reaction (NRR) paves a sustainable way to produce NH3 but suffering from the relatively low NH3 yield and poor selectivity. High-performance NRR catalysts and a deep insight into the structure-performance relationship are higher desired. Herein, a molten-salt approach is developed to synthesize tiny CeO2 nanoparticles anchored by ultra-thin MoN nanosheets as advanced catalysts for NRR. Specifically, a considerably high NH3 yield rate of 27.5 µg h-1 mg-1 with 17.2% Faradaic efficiency (FE) can be achieved at -0.3 V vs (RHE) under ambient conditions. Experimental and density functional theory (DFT) calculations further point out that the incorporation of MoN with CeO2 can promotes the enlargement of the electron deficient area of nitrogen vacancy site. The enlarged electron deficient area contributes to the accommodation of lone pair electrons of N2, which dramatically improves the N2 adsorption/activation and the key intermediates (*NNH and *NH3) generation, thus boosting the NRR performance.
RESUMEN
Hydrocracking catalysis is a key route to plastic waste upgrading, but the acid site-driven C-C cleavage step is relatively sluggish in conventional bifunctional catalysts, dramatically effecting the overall efficiency. We demonstrate here a facile and efficient way to boost the reactivity of acid sites by introducing Ce promoters into Pt/HY catalysts, thus achieving a better metal-acid balance. Remarkably, 100 % of low-density polyethylene (LDPE) can be converted with 80.9 % selectivity of liquid fuels over the obtained Pt/5Ce-HY catalysts at 300 °C in 2â h. For comparison, Pt/HY only gives 38.8 % of LDPE conversion with 21.3 % selectivity of liquid fuels. Through multiple experimental studies on the structure-performance relationship, the Ce species occupied in the supercage are identified as the actual active sites, which possess remarkably-improved adsorption capability towards short-chain intermediates.
RESUMEN
Maintaining the stability of noble metals is the key to the long-term stability of supported catalysts. In response to the instability of noble metal species at high temperatures, we developed a synergistic strategy of dual oxide supports. By designing and constructing ceria components with small sizes, we have achieved unity in the ability of catalytic materials to supply oxygen and stabilize metal species. In this study, we prepared Al2O3-CeO2-Pd (AlCePd) catalysts containing trace amounts of Ce through the hydrolysis of cerium acetate, which achieved 100% CO conversion at 160 °C. More importantly, the activity remained at its initial 100% in the long-term durability testing, demonstrating the high stability of AlCePd. In contrast, the CO conversion of the CeO2-Pd (CePd) catalyst decreased from 100% to 54% within 3 h. Through comprehensive studies, we found that this excellent catalytic performance stems from the stabilizing effect of an alumina support and the possible reverse oxygen spillover effect of small-sized ceria components, where small-sized ceria components provide active oxygen for independent Pd species, making it possible for the CO adsorbed on Pd to react with this oxygen species.
RESUMEN
Tumor cells movement and migration are inseparable from the integrity of lipid rafts and the formation of lamellipodia, and lipid rafts are also a prerequisite for the formation of lamellipodia. Therefore, destroying the lipid rafts is an effective strategy to inhibit tumor metastasis. Herein, a multi-enzyme co-expressed nanomedicine: cholesterol oxidase (CHO) loaded CoâPN3 single-atom nanozyme (CoâPN3 SA/CHO) that can up-regulate cellular oxidative stress, disrupt the integrity of lipid rafts, and inhibit lamellipodia formation to induce anti-metastasis tumor therapy, is developed. In this process, CoâPN3 SA can catalyze oxygen (O2 ) and hydrogen peroxide (H2 O2 ) to generate reactive oxygen species (ROS) via oxidase-like and Fenton-like properties. The doping of P atoms optimizes the adsorption process of the intermediate at the active site and enhances the ROS generation properties of nanomedicine. Meantime, O2 produced by catalase-like catalysis can combine with excess cholesterol to generate more H2 O2 under CHO catalysis, achieving enhanced oxidative damage to tumor cells. Most importantly, cholesterol depletion in tumor cells also disrupts the integrity of lipid rafts and inhibits the formation of lamellipodia, greatly inhibiting the proliferation and metastasis of tumor cells. This strategy by up-regulating cellular oxidative stress and depleting cellular cholesterol constructs a new idea for anti-metastasis-oriented cancer therapy strategies.