Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553197

RESUMEN

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Asunto(s)
Nanopartículas , Nitritos , Selenio , Elementos de Transición , Antibacterianos/farmacología , Celulosa/farmacología , Conductividad Eléctrica , Hidrogeles/farmacología
2.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354318

RESUMEN

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Saccharomyces boulardii , Selenio , Catálisis , Saccharomyces boulardii/metabolismo , Selenio/metabolismo , Selenito de Sodio , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
3.
Artículo en Inglés | MEDLINE | ID: mdl-38386145

RESUMEN

Yeast extract serves as a source of nutritional components essential for human dietary requirements, feed formulations, and the vital growth factors and nutrients necessary for microorganisms. However, the production cost of yeast extract using cultivated active dry yeast is relatively high. This study aims to utilize the autolysis of discarded yeast post beer brewing to produce yeast extract. The concentration, temperature, pH, and time conditions are systematically optimized. It reveals that the yield of amino nitrogen and solids in the extract was increased by 3.3% and 20.9% under the optimized conditions (1.2% wall-breaking enzyme, 1% yeast extract enzyme, and a hydrolysis time of 24 h) than that of the documented 4.03% and 69.05%. Additionally, a comparative analysis with commercially available yeast powder demonstrates that the yeast extract derived from this study adequately fulfills the nutritional requirements for microbial growth. Hence, the utilization of discarded beer yeast presents an opportunity for the valuable reclamation of waste yeast, showcasing promising potential applications.

4.
Int J Biol Macromol ; 257(Pt 2): 128684, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086431

RESUMEN

In this work, the effects of four different extraction methods, acid (HCl), alkali (NaOH), enzymes (cellulase/pectinase), and buffer (pH 7.0) on the physicochemical properties and functionalities of burdock pectin were systematically investigated and compared. Buffer extraction gave a low yield (2.8 %) and is therefore limited in its application. The acid treatment hydrolyzed the neutral sidechains and gave a homogalacturonan content of 72.6 %. By contrast, alkali and enzymes preserved the sidechains while degrading the polygalacturonan backbone, creating a rhamnogalacturonan-I dominant structure. The branched structure, low molecular weight, and high degree of methylation (42.3 %) contributed to the interfacial adsorption, emulsifying capacity, and cellular antioxidant activity of the enzyme-extracted product. For the acid-extracted product, the strong intramolecular electrostatic repulsion restricted the formation of a contact interface to prevent coalescence of the emulsion. In addition, they did not have sufficient reducing ends to scavenge free radicals. Although a high branching size (5.0) was adopted, the low degree of methylation (19.5 %) affected the emulsifying capacity of the alkali-extracted products. These results provide useful information for pectic polysaccharides production with tailored properties.


Asunto(s)
Arctium , Arctium/química , Pectinas/química , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/química , Álcalis
5.
Front Immunol ; 14: 1294288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090587

RESUMEN

By the end of 2022, different variants of Omicron had rapidly spread worldwide, causing a significant impact on the Coronavirus disease 2019 (COVID-19) pandemic situation. Compared with previous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these new variants of Omicron exhibited a noticeable degree of mutation. The currently developed platforms to design COVID-19 vaccines include inactivated vaccines, mRNA vaccines, DNA vaccines, recombinant protein vaccines, virus-like particle vaccines, and viral vector vaccines. Many of these platforms have obtained approval from the US Food and Drug Administration (FDA) or the WHO. However, the Omicron variants have spread in countries where vaccination has taken place; therefore, the number of cases has rapidly increased, causing concerns about the effectiveness of these vaccines. This article first discusses the epidemiological trends of the Omicron variant and reviews the latest research progress on available vaccines. Additionally, we discuss progress in the development progress and practical significance of universal vaccines. Next, we analyze the neutralizing antibody effectiveness of approved vaccines against different variants of Omicron, heterologous vaccination, and the effectiveness of multivalent vaccines in preclinical trials. We hope that this review will provide a theoretical basis for the design, development, production, and vaccination strategies of novel coronavirus vaccines, thus helping to end the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19 , Vacunas Virales , Estados Unidos/epidemiología , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA