Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Adv Sci (Weinh) ; : e2405935, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116306

RESUMEN

Local immunotherapy represents a promising solution for preventing tumor recurrence and metastasis post tumor surgical resection by eliminating residue tumor cells as well as eliciting tumor-specific immune responses. Minimally invasive surgery has become a mainstream surgical method worldwide due to its advantages of aesthetics and rapid postoperative recovery. Unfortunately, the currently reported local immunotherapy strategies are mostly designed to be used after open laparotomy, which go against the current surgical philosophy of minimally invasive therapy and is not suitable for clinical translation. Aiming at this problem, a minimally invasive injectable gel (MIGel) is herein reported loaded with immunotherapeutic agents for gastric and liver cancer postoperative treatment. The MIGel is formed by crosslinking between oxidized dextran (ODEX) and 4-arm polyethylene glycol hydroxylamine (4-arm PEG-ONH2) through oxime bonds, which can be injected through a clinic-used minimally invasive drainage tube and adhered tightly to the tissue. The loaded oxaliplatin (OxP) and resiquimod (R848) can be released constantly over two weeks and resulted in over 75% cure rate in orthotopic mouse gastric and liver cancer model. Collectively, a concept of minimally invasive local immunotherapy is proposed and MIGel is designed for local intraperitoneal cancer immunotherapy through minimally invasive surgery, with good clinical translation potential.

2.
Nano Lett ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109634

RESUMEN

Personalized cancer vaccines targeting specific neoantigens have been envisioned as one of the most promising approaches in cancer immunotherapy. However, the physicochemical variability of the identified neoantigens limits their efficacy as well as vaccine manufacturing in a uniform format. Herein, we developed a uniform nanovaccine platform based on poly(2-oxazoline)s (POx) to chemically conjugate neoantigen peptides, regardless of their physicochemical properties. This vaccine system could self-assemble into nanoparticles with uniform size (around 50 nm) and improve antigen accumulation as well as infiltration in the lymph node to increase antigen presentation. In vivo vaccination using this system conjugated with three predicted peptide neoantigen peptides from the MC38 tumor cell line induced 100% robust CD8+ T cell responses and superior tumor clearance compared to free peptides. This POx-based vaccine carrier represents a generalizable approach to increase the availability and efficacy of screened neoantigen peptides for a personalized cancer vaccine.

3.
Adv Healthc Mater ; : e2400886, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824421

RESUMEN

Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, 10-30 d constant release of the loaded recombinant protein antigens is successfully realized, and it is proved that sustained release of antigens can significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32 000 times and 8000 times improvement is observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant is confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines.

4.
Adv Drug Deliv Rev ; 211: 115345, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834140

RESUMEN

Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Bacterias/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
5.
J Mater Chem B ; 12(24): 5848-5860, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38775048

RESUMEN

Nanoparticles have been regarded as a promising vaccine adjuvant due to their innate immune potentiation and enhanced antigen transport. However, the inefficient infiltration into the lymph node (LN) paracortex of nanoparticles caused by subcapsular sinus (SCS) obstruction is the main challenge in further improvement of nanovaccine immune efficacy. Herein, we propose to overcome paracortex penetration by using nanovaccine to spontaneously and continuously release antigens after retention in the SCS. In detail, we utilized a spontaneous retro-Diels-Alder (r-D-A) reaction linker to connect poly{(2-methyl-2-oxazoline)80-co-[(2-butyl-2-oxazoline)15-r-(2-thioethyl-2-oxazoline)8]} (PMBOxSH) and peptides for the peptide nanovaccine construction. The r-D-A reaction linker can spontaneously break over time, allowing the nanovaccine to release free antigens and adjuvants upon reaching the LN, thereby facilitating the entry of released antigens and adjuvants into the interior of the LNs. We showed that the efficacy of the peptide nanovaccine constructed using this dynamic linker could be significantly improved, thus greatly enhancing the tumor inhibition efficacy in the B16-OVA model. This dynamic-covalent-chemistry-based vaccine strategy may inspire designing more efficient therapeutic vaccines, especially those that require eliciting high-amount T cell responses.


Asunto(s)
Inmunidad Celular , Ganglios Linfáticos , Nanopartículas , Péptidos , Animales , Ratones , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Inmunidad Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Reacción de Cicloadición , Femenino , Tamaño de la Partícula , Nanovacunas
6.
J Control Release ; 370: 528-542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705520

RESUMEN

Reversing the aggravated immunosuppression hence overgrowth of colorectal cancer (CRC) caused by the gut inflammation and microbiota dysbiosis is pivotal for effective CRC therapy and metastasis inhibition. However, the low delivery efficiency and severe dose-limiting off-target toxicities caused by unsatisfied drug delivery systems remain the major obstacles in precisely modulating gut inflammation and microbiota in CRC therapy. Herein, a multifunctional oral dextran-aspirin nanomedicine (P3C-Asp) was utilized for oral treatment of primary CRC, as it could release salicylic acid (SA) while scavenging reactive oxygen species (ROS) and held great potential in modulating gut microbiota with prebiotic (dextran). Oral P3C-Asp retained in CRC tissues for over 12 h and significantly increased SA accumulation in CRC tissues over free aspirin (10.8-fold at 24 h). The enhanced SA accumulation and ROS scavenging of P3C-Asp cooperatively induced more potent inflammation relief over free aspirin, characterized as lower level of cyclooxygenase-2 and immunosuppressive cytokines. Remarkably, P3C-Asp promoted the microbiota homeostasis and notably increased the relative abundance of strengthening systemic anti-cancer immune response associated microbiota, especially lactobacillus and Akkermansia to 6.66- and 103- fold over the control group. Additionally, a demonstrable reduction in pathogens associated microbiota (among 96% to 79%) including Bacteroides could be detected. In line with our findings, inflammation relief along with enhanced abundance of lactobacillus was positively correlated with CRC inhibition. In primary CRC model, P3C-Asp achieved 2.1-fold tumor suppression rate over free aspirin, with an overall tumor suppression rate of 85%. Moreover, P3C-Asp cooperated with αPD-L1 further reduced the tumor weight of each mouse and extended the median survival of mice by 29 days over αPD-L1 alone. This study unravels the synergistic effect of gut inflammation and microbiota modulation in primary CRC treatment, and unlocks an unconventional route for immune regulation in TME with oral nanomedicine.


Asunto(s)
Aspirina , Neoplasias Colorrectales , Dextranos , Microbioma Gastrointestinal , Homeostasis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Homeostasis/efectos de los fármacos , Administración Oral , Dextranos/administración & dosificación , Dextranos/química , Nanomedicina , Ratones Endogámicos BALB C , Inflamación/tratamiento farmacológico , Masculino , Ratones , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Nanopartículas/administración & dosificación , Línea Celular Tumoral , Femenino
7.
Mater Horiz ; 11(11): 2739-2748, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516806

RESUMEN

A qualified delivery system is crucial for the successful application of messenger RNA (mRNA) technology. While lipid nanoparticles (LNPs) are currently the predominant platform for mRNA delivery, they encounter challenges such as high inflammation and difficulties in targeting non-liver tissues. Polymers offer a promising delivery solution, albeit with limitations including low transfection efficiency and potential high toxicity. Herein, we present a poly(L-glutamic acid)-based phosphatidyl polymeric carrier (PLG-PPs) for mRNA delivery that combines the dual advantages of phospholipids and polymers. The PLGs grafted with epoxy groups were firstly modified with different amines and then with alkylated dioxaphospholane oxides, which provided a library of PLG polymers grafted with various phosphatidyl groups. In vitro studies proved that PLG-PPs/mRNA polyplexes exhibited a significant increase in mRNA expression, peaking 14 716 times compared to their non-phosphatidyl parent polymer. Impressively, the subset PA8-PL3 not only facilitated efficient mRNA transfection but also selectively delivered mRNA to the spleen instead of the liver (resulting in 69.73% protein expression in the spleen) once intravenously administered. This type of phosphatidyl PLG polymer library provides a novel approach to the construction of mRNA delivery systems especially for spleen-targeted mRNA therapeutic delivery.


Asunto(s)
ARN Mensajero , Bazo , Bazo/metabolismo , Animales , ARN Mensajero/administración & dosificación , Polímeros/química , Ratones , Humanos , Transfección/métodos , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/química , Nanopartículas , Fosfolípidos/química , Técnicas de Transferencia de Gen
8.
Sci Bull (Beijing) ; 69(7): 922-932, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331707

RESUMEN

Neoantigen cancer vaccines have been envisioned as one of the most promising means for cancer therapies. However, identifying neoantigens for tumor types with low tumor mutation burdens continues to limit the effectiveness of neoantigen vaccines. Herein, we proposed a "hit-and-run" vaccine strategy which primes T cells to attack tumor cells decorated with exogenous "neo-antigens". This vaccine strategy utilizes a peptide nanovaccine to elicit antigen-specific T cell responses after tumor-specific decoration with a nanocarrier containing the same peptide antigens. We demonstrated that a poly(2-oxazoline)s (POx) conjugated with OVA257-264 peptide through a matrix metalloprotease 2 (MMP-2) sensitive linker could efficiently and selectively decorate tumor cells with OVA peptides in vivo. Then, a POx-based nanovaccine containing OVA257-264 peptides to elicit OVA-specific T cell responses was designed. In combination with this hit-and-run vaccine system, an effective vaccine therapy was demonstrated across tumor types even without OVA antigen expression. This approach provides a promising and uniform vaccine strategy against tumors with a low tumor mutation burden.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Epítopos , Antígenos de Neoplasias , Neoplasias/terapia , Péptidos
9.
Natl Sci Rev ; 11(3): nwad310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38312378

RESUMEN

Virus-like particle (VLP) vaccines had shown great potential during the COVID-19 pandemic, and was thought to be the next generation of antiviral vaccine technology due to viromimetic structures. However, the time-consuming and complicated processes in establishing a current recombinant-protein-based VLP vaccine has limited its quick launch to the out-bursting pandemic. To simplify and optimize VLP vaccine design, we herein report a kind of viromimetic polymer nanoparticle vaccine (VPNVax), with subunit receptor-binding domain (RBD) proteins conjugated to the surface of polyethylene glycol-b-polylactic acid (PEG-b-PLA) nanoparticles for vaccination against SARS-CoV-2. The preparation of VPNVax based on synthetic polymer particle and chemical post-conjugation makes it possible to rapidly replace the antigens and construct matched vaccines at the emergence of different viruses. Using this modular preparation system, we identified that VPNVax with surface protein coverage of 20%-25% had the best immunostimulatory activity, which could keep high levels of specific antibody titers over 5 months and induce virus neutralizing activity when combined with an aluminum adjuvant. Moreover, the polymer nano-vectors could be armed with more immune-adjuvant functions by loading immunostimulant agents or chemical chirality design. This VPNVax platform provides a novel kind of rapidly producing and efficient vaccine against different variants of SARS-CoV-2 as well as other viral pandemics.

10.
ACS Nano ; 18(4): 3087-3100, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235966

RESUMEN

Breast cancer is the most commonly diagnosed cancer, and surgical resection is the first choice for its treatment. With the development of operation techniques, surgical treatment for breast cancer is evolving toward minimally invasive and breast-conserving approaches. However, breast-conserving surgery is prone to an increased risk of cancer recurrence and is becoming a key challenge that needs to be solved. In this study, we introduce a one-shot injectable nano-in-gel vaccine (NIGel-Vax) for postoperative breast cancer therapy. The NIGel-Vax was constructed by mixing protein antigens with PEI-4BImi-Man adjuvant and then encapsulated in a hydrogel made with oxidized dextran (ODEX) and 4-arm PEG-ONH2. Using 4T1 tumor-extracted proteins as antigen, the NIGel-Vax achieved a 92% tumor suppression rate and a 33% cure rate as a postoperative therapy in the 4T1 tumor model. Using the tumor-associated antigen trophoblast cell-surface antigen 2 (TROP2) protein as the antigen, NIGel-Vax achieved a 96% tumor suppression rate and a 50% cure rate in triple-negative breast cancer (TNBC) models. This design provides an encouraging approach for breast cancer postoperative management.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Vacunas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/cirugía , Nanovacunas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Mastectomía Segmentaria , Hidrogeles/uso terapéutico , Línea Celular Tumoral
11.
Nat Biotechnol ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749267

RESUMEN

Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.

12.
Sci Adv ; 9(32): eadh2413, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556535

RESUMEN

Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Inmunoterapia Adoptiva , Línea Celular Tumoral , Fagocitosis , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
13.
Biomater Sci ; 11(8): 2620-2638, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36661319

RESUMEN

Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.


Asunto(s)
Ácido N-Acetilneuramínico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Ácidos Siálicos , Glicoproteínas , Leucocitos
14.
Adv Mater ; 35(14): e2206989, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36566024

RESUMEN

Natural killer (NK) cell therapies show potential for tumor treatment but are immunologically resisted by the overexpressed immunosuppressing tumor cell surface glycans. To reverse this glycan-mediated immunosuppression, the surface NK-inhibitory glycan expressions need to be downregulated and NK-activating glycan levels should be elevated synchronously with optimal efficiency. Here, a core-shell membrane-fusogenic liposome (MFL) is designed to simultaneously achieve the physical modification of NK-activating glycans and biological inhibition of immunosuppressing glycans on the tumor cell surface via a membrane-fusion manner. Loaded into a tumor-microenvironment-triggered-degradable thermosensitive hydrogel, MFLs could be conveniently injected and controllably released into local tumor. Through fusion with tumor cell membrane, the released MFLs could simultaneously deliver sialyltransferase-inhibitor-loaded core into cytoplasm, and anchor NK-activating-glycan-modified shell onto tumor surface. This spatially-differential distribution of core and shell in one cell ensures the effective inhibition of intracellular sialyltransferase to downregulate immunosuppressing sialic acid, and direct presentation of NK-activating Lewis X trisaccharide (LeX) on tumor surface simultaneously. Consequentially, the sialic acid-caused immunosuppression of tumor surface is reprogrammed to be LeX-induced NK activation, resulting in sensitive susceptibility to NK-cell-mediated recognition and lysis for improved tumor elimination. This MFL provides a novel platform for multiplex cell engineering and personalized regulation of intercellular interactions for enhanced cancer immunotherapy.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Neoplasias/terapia , Membrana Celular/metabolismo , Polisacáridos , Sialiltransferasas , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
15.
J Control Release ; 353: 289-302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403683

RESUMEN

Immunotherapy has been widely used in the treatment of advanced stage cancers with spreading metastases, while the fully activation of immune system often requires sustained and long-acting immune stimulation by immunotherapeutic agents. In previous studies, we designed a biopolymer immune implant by dynamic covalent bonds and achieved sustained release of loaded immunotherapeutic agents, thus stimulated systemic immune activation and elicited immune memory effects. Herein, we further optimized the implants and carried out a comprehensive evaluation of the implants on peritoneal metastasis carcinoma (PMC) therapy. Our results showed that the implants fabricated with 8-arm polyethylene glycol amine (8-arm PEG-NH2) and 40% oxidation degree dextran (ODEX) exhibited a satisfactory degradation time for activating the antitumor immunity. The drug combination of oxaliplatin (OxP) and resiquimod (R848) could be sustainably released from the implants for 18 days. The implants cured 75% of mice with PMC and elicited immune memory effects to resist tumor re-challenge without obvious side effects observed. Mechanism analysis revealed that the implants could serve as an in-situ vaccine to enhance the infiltration of activated dendritic cells (DCs), T cells and natural killer (NK) cells inside the tumor, as well as increase the serum tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and interleukin 12 (IL-12) levels. These results strongly support the clinical translation potential of this sustained released biopolymer immune implants for PMC therapy.


Asunto(s)
Carcinoma , Neoplasias Peritoneales , Ratones , Animales , Neoplasias Peritoneales/tratamiento farmacológico , Interleucina-12/metabolismo , Interferón gamma , Inmunoterapia/métodos
16.
ACS Biomater Sci Eng ; 9(7): 4108-4116, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-35653749

RESUMEN

OX40 (CD134, TNFRSF4) is a member of the tumor necrosis factor receptor superfamily that can be activated by its cognate ligand OX40L (CD252, TNFSF4) and functions as a pair of T cell costimulatory molecules. The interaction between OX40 and OX40L (OX40/OX40L) plays a critical role in regulating antitumor immunity, including promoting effector T cells expansion and survival, blocking natural regulatory T cells (Treg) activity, and antagonizing inducible Treg generation. However, current OX40 agonists including anti-OX40 monoclonal antibodies (aOX40) have serious side effects after systemic administration, which limits their clinical success and application. Herein, we propose a strategy to reprogram tumor cells into OX40L-expressing "artificial" antigen-presenting cells (APCs) by OX40L plasmid-loaded nanoparticles for boosting antitumor immunity in situ. A novel gene transfection carrier was prepared by a modular hierarchical assembly method, which could efficiently transfect various tumor cells and express OX40L proteins on their surface. These surface-decorated OX40L proteins were proved to stimulate T cell proliferation in vitro while stimulating strong antitumor immune responses in vivo. Importantly, this in situ reprogramming strategy did not induce any toxicity as observed in aOX40 treatment, thus providing a novel method for immune checkpoint stimulator application.


Asunto(s)
Neoplasias , Ligando OX40 , Humanos , Ligando OX40/genética , Ligando OX40/metabolismo , Linfocitos T Reguladores/metabolismo , Activación de Linfocitos , Neoplasias/tratamiento farmacológico
17.
Asian J Pharm Sci ; 17(4): 571-582, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36105315

RESUMEN

Poly(2-oxazoline) (POx) has been regarded as a potential candidate for drug delivery carrier to meet the challenges of nanomedicine clinical translation, due to its excellent biocompatibility and self-assembly properties. The drug loading capacity and stability of amphiphilic POxs as drug nanocarriers, however, tend to be insufficient. Herein, we report a strategy to prepare nucleobase-crosslinked POx nanoparticles (NPs) with enhanced stability and ultra-high paclitaxel (PTX) loading capacity for breast cancer therapy. An amphiphilic amine-functionalized POx (PMBEOx-NH2) was firstly prepared through a click reaction between cysteamines and vinyl groups in poly(2-methyl-2-oxazoline)-block-poly (2­butyl­2-oxazoline-co-2-butenyl-2-oxazoline) (PMBEOx). Complementary nucleobase-pairs adenine (A) and uracil (U) were subsequently conjugated to PMBEOx-NH2 to give functional POxs (POxA and POxU), respectively. Due to the nucleobase interactions formed between A and U, NPs formed by POxA and POxU at a molar ratio of 1:1 displayed ultrahigh PTX loading capacity (38.2%, PTX/POxA@U), excellent stability, and reduced particle size compared to the uncross-linked PTX-loaded NPs (PTX/PMBEOx). Besides the prolonged blood circulation and enhanced tumor accumulation, the smaller PTX/POxA@U NPs also have better tumor penetration ability compared with PTX/PMBEOx, thus leading to a higher tumor suppression rate in two murine breast cancer models (E0711 and 4T1). These results proved that the therapeutic effect of chemotherapeutic drugs could be improved remarkably through a reasonable optimization of nanocarriers.

18.
Biomaterials ; 284: 121489, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364489

RESUMEN

Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Adyuvantes Inmunológicos/química , Animales , Células Dendríticas , Inmunoterapia , Mananos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Poliésteres/uso terapéutico , Polímeros/uso terapéutico
19.
J Control Release ; 343: 303-313, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104570

RESUMEN

Interactions between different cell types in the tumor microenvironment (TME) affect tumor growth. Tumor-associated fibroblasts produce C-X-C motif chemokine ligand 13 (CXCL13) which recruits B cells to the TME. B-cells in the TME differentiate into regulatory B cells (Bregs) (IL-10+CD1d+CD5+CD138+CD19+). We highlight these Breg cells as a new important factor in the modulation of the immunosuppressive TME in different desmoplastic murine tumor models. In addition, CXCL13 also stimulates epithelial-mesenchymal transition (EMT) of the tumor cells. The tumorigenic roles of CXCL13 led us to explore an innovative anti-cancer strategy based on delivering plasmid DNA encoding a CXCL13 trap to reduce Bregs differentiation and normalize EMT, thereby suppressing tumor growth. CXCL13 trap suppressed tumor growth in pancreatic cancer, BRAF-mutant melanoma, and triple-negative breast cancer. In this study, following treatment, the affected tumor remained dormant resulting in prolonged progression-free survival of the host.


Asunto(s)
Linfocitos B Reguladores , Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Neoplasias de la Mama Triple Negativas , Animales , Linfocitos B Reguladores/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral
20.
Adv Mater ; 34(10): e2109254, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34984753

RESUMEN

In recent years, significant evolutions have been made in applying nanotechnologies for prophylactic and therapeutic cancer vaccine design. However, the clinical translation of nanovaccines is still limited owing to their complicated compositions and difficulties in the spatiotemporal coordination of antigen-presenting cell activation and antigen cross-presentation. Herein, a minimalist binary nanovaccine (BiVax) is designed that integrates innate stimulating activity into the carrier to elicit robust antitumor immunity. The authors started by making a series of azole molecules end-capped polyethylenimine (PEI-M), and were surprised to find that over 60% of the PEI-M polymers have innate stimulating activity via activation of the stimulator of interferon genes pathway. PEI-4BImi, a PEI-M obtained from a series of polymers, elicits robust antitumor immune responses when used as a subcutaneously injected nanovaccine by simply mixing with ovalbumin antigens, and this BiVax system performs much better than the traditional ternary vaccine system, as well as, commercialized aluminum-containing adjuvants. This system also enables the fast preparation of personalized BiVax by compositing PEI-4BImi with autologous tumor cell membrane protein antigens, and a 60% postoperative cure rate is observed when combined with immune checkpoint inhibitors.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Animales , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA