Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.928
Filtrar
1.
J Inflamm Res ; 17: 2745-2756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737108

RESUMEN

Purpose: Cucurbitacins, which are found in a variety of medicinal plants, vegetables and fruits, were known for their diverse pharmacological and biological activities, including anticancer, anti-oxidative and anti-inflammatory effects. Cucurbitacin E, one of the major cucurbitacins, was recently proved to inhibit inflammatory response. Methods: To explore the therapeutic effects of cucurbitacin E on colitis and the underlying mechanisms, male mice drunk water containing 2.5% dextran sulfate sodium (DSS) to establish colitis model and administrated with cucurbitacin E during and after DSS treatment. The disease activity index was scored and colonic histological damage was observed. Intestinal tight junction and inflammatory response were determined. 16S rRNA and transcriptome sequencing were performed to analyze gut microbiota composition and gene expression, respectively. Results: We found that cucurbitacin E alleviated DSS-induced body weight loss and impaired colonic morphology. Cucurbitacin E decreased the expression of inflammatory cytokines and cell apoptosis, and maintained barrier function. Additionally, cucurbitacin E retrieved DSS-induced alterations in the bacterial community composition. Furthermore, a variety of differentially expressed genes (DEGs) caused by cucurbitacin E were enriched in several pathways including the NFκB and TNF signaling pathways as well as in Th17 cell differentiation. There was a close relationship between DEGs and bacteria such as Escherichia-Shigella and Muribaculaceae. Conclusion: Our results revealed that cucurbitacin E may exert protective effects on colitis via modulating inflammatory response, microbiota composition and host gene expression. Our study supports the therapeutic potential of cucurbitacin E in colitis and indicates that gut microbes are potentially therapeutic targets.

2.
Front Psychol ; 15: 1380893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725953

RESUMEN

Background: Sugar-sweetened beverages (SSBs) and duration of physical exercise are strongly associated with physical health. Unfortunately, there are few studies focused on the association with psychological symptoms, let alone Tibetan university students at high altitudes in China. Methods: A stratified cluster sampling method was used to include 8,268 Tibetan university students aged 19-22 years in Qinghai and Tibet, both of which are high-altitude regions of China. Self-assessment questionnaires on SSBs, duration of physical exercise, and psychological symptoms were administered. The chi-square test and logistic regression analysis were used to analyze the associations among them. Results: The detection rate of psychological symptoms among Tibetan university students in high-altitude areas of China was 16.7%, with in girls (18.2%) higher than that in boys (14.8%), and the difference was statistically significant (χ2 = 11.73, p < 0.01). The proportion of SSBs for university students ≤1 time/week, 2-5 times/week, and ≥ 6 times/week were 54.2, 24.3, and 21.5%, respectively. The proportion of duration of physical exercise for >60 min/d was only 5.4%. Logistic regression analysis showed that compared with the SSBs ≤1 time/week group of university students, SSBs 2-5 times/week (OR = 1.45, 95% CI: 1.24-1.70) and ≥ 6 times/week (OR = 3.06, 95% CI: 2.62-3.57) had an increased risk of psychological symptoms (p < 0.001). In the reference group, the risk of psychological symptoms was also significantly increased in the group of university students with duration of physical exercise >60 min/d (OR = 2.08, 95% CI: 1.48-2.93), and the risk of psychological symptoms was also significantly increased in the group with duration of physical exercise <30 min/d (OR = 2.08, 95% CI: 1.48-2.93). The risk of psychological symptoms was also significantly increased in the university students with the duration of physical exercise <30 min/d (OR = 2.08, 95% CI: 1.48 ~ 2.93) group. Conclusion: SSBs and exercise time may be important influences on the psychological symptoms of Tibetan university students at high altitudes in China. This study has important implications for mental health planning in universities in highland areas and may also provide guidance for mental health interventions for Tibetan university students.

3.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699920

RESUMEN

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Asunto(s)
Escherichia coli , Fermentación , Ingeniería Metabólica , Fenilalanina , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vías Biosintéticas
4.
Front Pharmacol ; 15: 1327008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741586

RESUMEN

Introduction: TT-01025-CL is an oral, irreversible small molecule that potently inhibits vascular adhesion protein-1 (VAP-1) for the treatment of inflammation associated with non-alcoholic steatohepatitis (NASH). The objectives of this study were to evaluate the safety/tolerability, pharmacokinetics, and pharmacodynamics of TT-01025-CL, a VAP-1 inhibitor, in healthy Chinese volunteers. Methods: Double-blind, placebo-controlled, dose-escalation studies were conducted in subjects randomized to receive oral once-daily TT-01025-CL (ranges: 10-300 mg [single dose]; 20-100 mg for 7 days [multiple doses]) or placebo under fasting conditions. Safety and tolerability were monitored throughout the study. Pharmacokinetic (PK) parameters were determined using non-compartment analysis. The activity of semicarbazide-sensitive amine oxidase (SSAO)-specific amine oxidase and the accumulation of methylamine in plasma were evaluated as pharmacodynamic (PD) biomarkers. Results: A total of 36 (single-dose group) and 24 (multiple-dose group) subjects were enrolled in the study. No serious adverse events (AEs) were reported, and no subject discontinued due to an AE. All treatment-emergent adverse events (TEAEs) were mild and moderate in intensity. No dose-dependent increase in the intensity or frequency of events was observed. TT-01025-CL was rapidly absorbed after administration. In the single-ascending dose (SAD) study, median Tmax ranged from 0.5 to 2 h and mean t1/2z ranged from 2.09 to 4.39 h. PK was linear in the range of 100-300 mg. The mean Emax of methylamine ranged from 19.167 to 124.970 ng/mL, with mean TEmax ranging from 13.5 to 28.0 h. The complete inhibition (>90%) of SSAO activity was observed at 0.25-0.5 h post-dose and was maintained 48-168 h post-dose. In the multiple-ascending dose (MAD) study, a steady state was reached by day 5 in the 40 mg and 100 mg dose groups. Negligible accumulation was observed after repeated dosing. PK was linear in the range of 20-100 mg. Plasma methylamine appeared to plateau at doses of 20 mg and above, with mean Emax ranging from 124.142 to 156.070 ng/mL and mean TEmax ranging from 14.2 to 22.0 h on day 7. SSAO activity in plasma was persistently inhibited throughout the treatment period. No evident change in methylamine and SSAO activity was observed in the placebo groups. Conclusion: TT-01025-CL was safe and well-tolerated at a single dose of up to 300 mg and multiple doses of up to 100 mg once daily for 7 consecutive days. Absorption and elimination occurred rapidly in healthy volunteers. Linearity in plasma exposure was observed. TT-01025-CL inhibited SSAO activity rapidly and persistently in humans. The profile of TT-01025-CL demonstrates its suitability for further clinical development.

5.
RSC Adv ; 14(22): 15491-15498, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38741972

RESUMEN

Massive hemorrhage caused by injuries and surgical procedures is a major challenge in emergency medical scenarios. Conventional means of hemostasis often fail to rapidly and efficiently control bleeding, especially in inaccessible locations. Herein, a type of smart nanoliposome with ultrasonic responsiveness, loaded with thrombin (thrombin@liposome, named TNL) was developed to serve as an efficient and rapid hemostatic agent. Firstly, the hydrophilic cavities of the liposomes were loaded onto the sono-sensitive agent protoporphyrin. Secondly, a singlet oxygen-sensitive chemical bond was connected with the hydrophobic and hydrophilic ends of liposomes in a chemical bond manner. Finally, based on the host guest effect between ultrasound and the sono-sensitizer, singlet oxygen is continuously generated, which breaks the hydrophobic and hydrophilic ends of liposome fragments, causing spatial collapse of the TNL structure, swiftly releases thrombin loaded in the hydrophilic capsule cavity, thereby achieving accurate and rapid local hemostasis (resulted in a reduction of approximately 67% in bleeding in the rat hemorrhage model). More importantly, after thorough assessments of biocompatibility and biodegradability, it has been confirmed that TNL possesses excellent biosafety, providing a new avenue for efficient and precise hemostasis.

6.
ACS Appl Mater Interfaces ; 16(19): 25210-25220, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695129

RESUMEN

Co-free Li-rich Mn-based cathode materials (Co-free LRMOs) have become one of the most promising cathode materials in lithium-ion batteries for the next generation due to their low cost, high capacity, and environmental friendliness. Under high voltage, redox reactions involving anions can easily lead to various issues, including oxygen release, dissolution of transition metal elements (TMs), and structural collapse in these materials. The absence of the Co element further exacerbates this issue. Here, a simple one-step solid-phase reaction strategy is proposed to achieve nanoscale dual modification of the Co-free LRMOs with F and Tb doping. The dual modification has a relatively small impact on the cell parameters and Li+ diffusion ability of the LRMOs, leading to no significant improvement in its rate performance. The modified LRMOs only exhibited discharge capacities of 220.7, 200.1, 140.0, 115.5, and 90.9 mAh·g-1 at 0.1, 0.2, 1.0, 2.0, and 5.0 C, respectively. However, the modified Co-free LRMOs exhibit extremely strong structural stability and retain 95.1% of the initial capacity after 300 cycles, so far, the highest capacity retention rates among all Ni/Mn-based Li-rich materials. Mechanism studies have shown that the enhancement in structural stability of the Co-free LRMOs is attributed to the increased concentration of oxygen vacancies and Ni3+ ions through F doping. Furthermore, Tb doping not only hinders the release of O2 but also enhances the Li+ migration and electronic conductivity coefficient of the LRMOs.

7.
Zhen Ci Yan Jiu ; 49(5): 472-479, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764118

RESUMEN

OBJECTIVES: To investigate the effect of Peitu Yimu(strengthening spleen and soothing liver) acupuncture on intestinal mucosal barrier function and corticotropin-releasing factor (CRF)/CRF receptor 1 (CRFR1) pathway in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in alleviating IBS-D. METHODS: Forty female SD rats were randomly divided into blank, model, electroacupuncture (EA), and agonist groups, with 10 rats in each group. Except for the blank group, rats in the other groups were given folium sennae infusion by gavage combined with chronic unpredictable mild stress to establish IBS-D model. Rats in the EA group received acupuncture at "Tianshu"(ST25) and EA at "Zusanli"(ST36) and "Taichong"(LR3) (2 Hz/15 Hz) on one side for 20 min, with the side chosen alternately every other day, for 14 days after modeling. Rats in the agonist group received acupuncture 30 min after intravenous injection of CRFR1 agonist urocortin, with the same manipulation method and time as the EA group. Before and after intervention, visceral pain threshold and stool Bristol scores were measured. Elevated plus maze test and open field test were used to detect anxiety and depression like behavior of rats. ELISA was used to detect the contents of CRF and CRFR1 in rats serum. Immunohistochemistry was used to detect the positive expressions of CRF, CRFR1, zonula occludens protein 1(ZO-1), occlusal protein(Occludin), and closure protein 1 (Claudin-1) in colon tissue. RESULTS: Compared with the blank group, the visceral pain threshold, open arm time percentage (OT%), total distance of movement in the open field test, and positive expression of ZO-1, Occludin, and Claudin-1 in colon were decreased (P<0.01, P<0.05), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were increased (P<0.01) in the model group. After intervention and compared with the model group, the visceral pain threshold, OT%, total distance of movement in the open field test, and positive expressions of ZO-1, Occludin, and Claudin-1 in colon were increased (P<0.05, P<0.01), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were decreased (P<0.01) in the EA group;the Bristol stool scores, serum CRF content, and CRF positive expression in colon were significantly decreased in the agonist group (P<0.01). CONCLUSIONS: Peitu Yimu acupuncture can significantly improve visceral hypersensitivity and anxiety-depression state in IBS-D rats. Its mechanism may be related to the inhibition of CRF/CRFR1 pathway and restoration of intestinal tight junction protein expressions.


Asunto(s)
Terapia por Acupuntura , Diarrea , Mucosa Intestinal , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina , Animales , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/genética , Ratas , Femenino , Humanos , Mucosa Intestinal/metabolismo , Diarrea/terapia , Diarrea/metabolismo , Diarrea/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/genética , Puntos de Acupuntura , Modelos Animales de Enfermedad , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Claudina-1/metabolismo , Claudina-1/genética
8.
Adv Mater ; : e2404842, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767289

RESUMEN

Revascularization after rotator cuff repair is crucial for tendon-to-bone healing. The chirality of materials has been reported to influence their performance in tissue repair. However, data on the use of chiral structures to optimize biomaterials as a revascularization strategy remain scarce. Here, we develop calcium silicate hydrate (CSO) films with hierarchical chirality on the atomic to micrometer scale. Interestingly, levorotatory CSO (L-CSO) films promote the migration and angiogenesis of endothelial cells, whereas dextral and racemic CSO films do not induce the same effect. Molecular analysis demonstrate that L-chirality can be recognized by integrin receptors and lead to the formation of focal adhesion, which activates mechanosensitive ion channel transient receptor potential vanilloid 4 to conduct Ca2+ influx. Consequently, the phosphorylation of serum response factor is biased by Ca2+ influx to promote the vascular endothelial growth factor receptor 2 signaling pathway, resulting in enhanced angiogenesis. After implanted in a rat rotator cuff tear model, L-CSO films strongly enhance vascularization at the enthesis, promoting collagen maturation, increasing bone and fibrocartilage formation, and eventually improving the biomechanical strength. This study reveals the mechanism through which chirality influences angiogenesis in endothelial cells and provides a critical theoretical foundation for the clinical application of chiral biomaterials. This article is protected by copyright. All rights reserved.

9.
Plant Dis ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736149

RESUMEN

Rice black-streaked dwarf virus is transmitted by small brown planthoppers, which causes maize rough dwarf disease and rice black-streaked dwarf disease. This virus leads to slow growth or death of the host plants. During the co-evolutionary arms race between viruses and plants, virus-derived small interfering RNAs challenge the plant's defense response and inhibit host immunity through the RNA silencing system. However, it is currently unknown if rice black-streaked dwarf virus can produce the same small interfering RNAs to mediate the RNA silencing in different infected species. In this study, four small RNA libraries and four degradome libraries were constructed by extracting total RNAs from the leaves of the maize (Zea mays) inbred line B73 and japonica rice (Oryza sativa) variety Nipponbare exposed to feeding by viruliferous and non-viruliferous small brown planthoppers. We analyzed the characteristics of small RNAs and explored virus-derived small interfering RNAs in small RNA libraries through high-throughput sequencing. On analyzing the characteristics of small RNA, we noted that the size distributions of small RNAs were mainly 24-nt (19.74%-62.00%), whereas those of virus-derived small interfering RNAs were mostly 21-nt (41.06%-41.87%) and 22-nt (39.72%-42.26%). The 5'-terminal nucleotides of virus-derived small interfering RNAs tended to be adenine or uracil. Exploring the distribution of virus-derived small interfering RNAs hot spots on the viral genome segments revealed that the frequency of hot spots in B73 was higher than those in Nipponbare. Meanwhile, hotspots in the S9 and S10 virus genome segments were distributed similarly in both hosts. In addition, the target genes of small RNA were explored by degradome sequencing. Analyses of the regulatory pathway of these target genes unveiled that viral infection affected the ribosome-related target genes in maize and target genes in metabolism and biosynthesis pathways in rice. Here, 562 and 703 virus-derived small interfering RNAs were separately obtained in maize and rice, and 73 virus-derived small interfering RNAs named as co-vsiRNAs were detected in both hosts. Stem-loop PCR and RT-qPCR confirmed that co-vsiRNA 3.1 and co-vsiRNA 3.5 derived from genome segment S3 simultaneously play a role in maize and rice and inhibited host gene expression. The study revealed that rice black-streaked dwarf virus can produce the same small interfering RNAs in different species and provides a new direction for developing the new antiviral strategies.

10.
J Biol Chem ; : 107395, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768812

RESUMEN

B2 haplotype MHC has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown and the presenting peptide is rarely identified. Here, we identified the peptide-binding motif of B2 haplotype MHC Ⅰ molecules (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC-Ⅰ LC-MS/MS analysis. To further clarify the structure basis of the peptide binding motif, we determined the crystal structure of the BF2*02:01-PB2552-560 complex at 1.9 Šresolution. We found that BF2*02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets of BF2*02:01 was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2*02:01 than BF2*04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterwards, we explored the H9N2 AIV-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, IFN-γ, NK lysin, and PARP in PBMCs were significantly increased in defending against H9N2 AIV infection. Especially, we selected 411 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot IFN-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.

11.
J Autism Dev Disord ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771506

RESUMEN

BACKGROUND: Adverse childhood experiences (ACEs) have been associated with poor health outcomes in the general population. However, their impact on autistic youth remains unclear. OBJECTIVE: The primary objective was to understand how childhood adversity is related to the general health, mental health, and physical health of transition-age autistic youth. PARTICIPANTS AND SETTING: Using data from the 2018-2021 National Survey of Children's Health, this cross-sectional study involved 2056 autistic youth aged 12-17. METHODS: Logistic regression was employed to test the association between three measures of ACEs - individual ACEs, cumulative ACEs, and grouped ACEs based on contexts, and health outcomes of autistic youth. RESULTS: Our study observed a high prevalence of ACEs among autistic youth, with a substantially higher proportion experiencing multiple ACEs than their neurotypical peers. Individual ACEs were significantly associated with specific health issues. Cumulative ACEs demonstrated a clear dose-response relationship with health outcomes, with higher ACE counts increasing the likelihood of experiencing poor general health, mental health conditions, and physical health issues. Moreover, grouped ACEs associated with health differently, with community-based ACEs being particularly linked to general health status, mental health conditions, and physical health conditions, while family-based ACEs correlated more with more severe mental health conditions and being overweight. CONCLUSION: These findings collectively emphasize the importance of addressing ACEs as a public health concern among transition-age autistic youth, highlighting the need for targeted interventions, prevention strategies, and support services to mitigate the negative impact of ACEs on the overall well-being of this growing community.

13.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705072

RESUMEN

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Asunto(s)
Técnicas Biosensibles , Exosomas , Oro , Espectrometría Raman , Humanos , Exosomas/química , Oro/química , Espectrometría Raman/métodos , Fosfolípidos/química , Fosfolípidos/orina , Límite de Detección , Impresión Molecular , Polímeros Impresos Molecularmente/química , Epítopos/inmunología , Epítopos/química , Nanopartículas del Metal/química , Tetraspanina 29/orina , Tetraspanina 29/análisis , Anticuerpos Inmovilizados/química
14.
Adv Mater ; : e2306701, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727004

RESUMEN

Photovoltaic cells (PVs) are able to convert solar energy to electric energy, while energy storage devices are required to be equipped due to the fluctuations of sunlight. However, the electrical connection of PVs and energy storage devices leads to increased energy consumption, and thus energy storage ability and utilization efficiency are decreased. One of the solutions is to explore an integrated photoelectrochemical energy conversion-storage device. Up to date, the integrated photo-rechargeable Li-ion batteries often suffer from unstable photo-active materials and flammable electrolytes under illumination, with concerns in safety risks and limited lifetime. To address the critical issues, here a novel photo-rechargeable aluminum battery (PRAB) is designed with safe ionic liquid electrolytes and stable polyaniline photo-electrodes. The integrated PRAB presents stable operation with an enhanced reversible specific capacity ≈191% under illumination. Meanwhile, a simplified continuum model is established to provide rational guidance for designing electrode structures along with a charging/discharging strategy to meet the practical operation conditions. The as-designed PRAB presents an energy-saving efficiency ≈61.92% upon charging and an energy output increment ≈31.25% during discharging under illumination. The strategy of designing and fabricating stable and safe photo-rechargeable non-aqueous Al batteries highlights the pathway for substantially promoting the utilization efficiency of solar energy.

15.
Aging (Albany NY) ; 16(9): 7733-7751, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696304

RESUMEN

BACKGROUND: The incidence of anastomotic leakage (AL) following esophagectomy is regarded as a noteworthy complication. There is a need for biomarkers to facilitate early diagnosis of AL in high-risk esophageal cancer (EC) patients, thereby minimizing its morbidity and mortality. We assessed the predictive abilities of inflammatory biomarkers for AL in patients after esophagectomy. METHODS: In order to ascertain the predictive efficacy of biomarkers for AL, Receiver Operating Characteristic (ROC) curves were generated. Furthermore, univariate, LASSO, and multivariate logistic regression analyses were conducted to discern the risk factors associated with AL. Based on these identified risk factors, a diagnostic nomogram model was formulated and subsequently assessed for its predictive performance. RESULTS: Among the 438 patients diagnosed with EC, a total of 25 patients encountered AL. Notably, elevated levels of interleukin-6 (IL-6), IL-10, C-reactive protein (CRP), and procalcitonin (PCT) were observed in the AL group as compared to the non-AL group, demonstrating statistical significance. Particularly, IL-6 exhibited the highest predictive capacity for early postoperative AL, exhibiting a sensitivity of 92.00% and specificity of 61.02% at a cut-off value of 132.13 pg/ml. Univariate, LASSO, and multivariate logistic regression analyses revealed that fasting blood glucose ≥7.0mmol/L and heightened levels of IL-10, IL-6, CRP, and PCT were associated with an augmented risk of AL. Consequently, a nomogram model was formulated based on the results of multivariate logistic analyses. The diagnostic nomogram model displayed a robust discriminatory ability in predicting AL, as indicated by a C-Index value of 0.940. Moreover, the decision curve analysis provided further evidence supporting the clinical utility of this diagnostic nomogram model. CONCLUSIONS: This predictive instrument can serve as a valuable resource for clinicians, empowering them to make informed clinical judgments aimed at averting the onset of AL.


Asunto(s)
Fuga Anastomótica , Neoplasias Esofágicas , Esofagectomía , Nomogramas , Humanos , Fuga Anastomótica/diagnóstico , Fuga Anastomótica/etiología , Fuga Anastomótica/epidemiología , Fuga Anastomótica/sangre , Esofagectomía/efectos adversos , Neoplasias Esofágicas/cirugía , Masculino , Femenino , Persona de Mediana Edad , Anciano , Factores de Riesgo , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Interleucina-6/sangre , Biomarcadores/sangre , Interleucina-10/sangre , Curva ROC , Polipéptido alfa Relacionado con Calcitonina/sangre , Valor Predictivo de las Pruebas
16.
Artículo en Inglés | MEDLINE | ID: mdl-38709266

RESUMEN

Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38693740

RESUMEN

BACKGROUND: N6-adenosine methylation (m6A) is a prevalent RNA modification associated with heart failure, alongside aberrant miRNA expression. Despite indications of miRNAs regulating m6A modification, their specific influence on m6A in heart failure remains unclear. METHODS: The initial analysis utilized transcriptome and methylation sequencing data from GSE131296 in mice to identify key m6A methylation enzymes in heart failure and construct an associated network. Integration of miRNA sequencing data from GSE231700 revealed miRNAs influencing m6A methylation enzymes, contributing to the formation of a comprehensive network. Furthermore, differential miRNA levels in human serum were assessed via qPCR, and the expression of m6A methyltransferases in the heart was confirmed using proteomic databases. RESULTS: In pressure overload-induced heart failure mice, 217 mRNAs showed differential expression, with FTO and IGF2BP2 identified as m6A methylation enzymes. Subsequent methylation sequencing revealed 884 highly-methylated and 178 lowly-methylated peaks, establishing a network linking Fto and Igf2bp2 with these peaks. Additionally, miRNA sequencing identified 156 differentially expressed miRNAs, including let-7b-5p and miR-23b-3p, predicted as m6Aregulating miRNAs, both elevated in heart failure patients. CONCLUSION: miR-23b-3p and let-7b-5p are identified as potential regulators of RNA methylation in heart failure, acting via FTO and IGF2BP2, offering new insights into the role of miRNA-mediated RNA methylation and its potential therapeutic avenues for heart failure.

18.
Angew Chem Int Ed Engl ; : e202407040, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761056

RESUMEN

Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8%, which is far from the application standards of wearable photovoltaic devices. Therefore, we developed a series of novel MCDs after meticulous molecular design. Among them, the consistent MCD backbone and end-capped functional group formed a highly conjugated molecular plane, and the solubilization and mechanical properties were effectively optimized by modifying the proportion of solubilized alkyl chains. Consequently, due to the formation of entangled structures with a frozen blend film morphology considerably improved the high ductility of the active layer, P10.8/P20.2-TCl exhibited efficient PCE in rigid (18.53%) and flexible (17.03%) OSCs, along with excellent FS values (16.59%) in pristine films, meanwhile, the outstanding FS values of 25.18% and 12.3% were achieved by P10.6/P20.4-TCl -based pristine and blend films, respectively, which were one of the highest records achieved by end-capped MCD-based binary OSCs, demonstrating promising application to synchronize the realization of high-efficiency and mechanically ductile flexible OSCs.

19.
Acta Physiol (Oxf) ; : e14163, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752665

RESUMEN

AIM: To reveal the contribution of Irisin in the beneficial effects of resistance exercise on myocardial fibrosis (MF) and cardiac function in the mice with myocardial infarction (MI). METHODS: The MI model was built by ligating the left anterior descending coronary artery in Fndc5 knockout mice (Fndc5-/-). Resistance exercise was started one week after surgery and continued for four weeks. In addition, H2O2, AICAR, recombinant human Irisin protein (rhIRISIN), and Sirt1 shRNA lentivirus (LV-Sirt1 shRNA) were used to intervene primary isolated cardiac fibroblasts (CFs). MF was observed through Masson staining, and apoptosis was assessed using TUNEL staining. MDA and T-SOD contents were detected by biochemical kits. The expression of proteins and genes was detected by Western blotting and RT-qPCR. RESULTS: Resistance exercise increased Fndc5 mRNA level, inhibited the activation of TGFß1-TGFßR2-Smad2/3 pathway, activated AMPK-Sirt1 pathway, reduced the levels of oxidative stress, apoptosis, and MF in the infarcted heart, and promoted cardiac function. However, Fndc5 knockout attenuated the protective effects of resistance exercise on the MI heart. Results of the in vitro experiments showed that AICAR and rhIRISIN intervention activated the AMPK-Sirt1 pathway and inactivated the TGFß1-Smad2/3 pathway, and promoted apoptosis in H2O2-treated CFs. Notably, these effects of rhIRISIN intervention, except for the TGFßR2 expression, were attenuated by LV-Sirt1 shRNA. CONCLUSION: Resistance exercise upregulates Fndc5 expression, activates AMPK-Sirt1 pathway, inhibits the activation of TGFß1-Smad2/3 pathway, attenuates MF, and promotes cardiac function after MI.

20.
Chembiochem ; : e202400142, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742957

RESUMEN

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA