RESUMEN
To explore the reason for cytoplasmic replacement's significant effect on browning, transcriptomic data of nuclear (N) and mitochondrial (M) mRNAs and long noncoding RNAs (lncRNAs) in L808 and two cytoplasmic hybrids (cybrids) (L808-A2 and L808-B) of Lentinula edodes at three different culturing times (80, 100, and 120 days) were obtained. The results showed that the expression of N and M genes and lncRNAs changed with the culture time and cytoplasmic source. Cytoplasmic replacement significantly affected some M and N genes related to the internal mechanism and external morphological characteristics of L. edodes browning. The internal browning mechanism should be the nicotinamide adenine dinucleotide phosphate (NADPH)-mediated antioxidant machinery to protect mycelia against oxidative stress induced by the generation of reactive oxygen species under light irradiation. External morphological characteristics were the changing features of brown films by melanin (an antioxidant) aggregation on the surface of the mycelia of the bag or log. Especially, some genes were related to the remodeling of the plasma membrane, extracellular enzymes of celluloses and hemicellulases, small molecules, and NADPH metabolic processes. Additionally, communication between the nucleus and mitochondria mediated by M-rps3 was reported for the first time, and it is mainly appreciated in M structural assembly, functional implementation, and cooperation with other organelles.
Asunto(s)
Núcleo Celular , Proteínas Fúngicas , Mitocondrias , Hongos Shiitake , Transcriptoma , Hongos Shiitake/genética , Hongos Shiitake/metabolismo , Hongos Shiitake/química , Hongos Shiitake/crecimiento & desarrollo , Mitocondrias/metabolismo , Mitocondrias/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Micelio/genética , Micelio/metabolismo , Micelio/química , Regulación Fúngica de la Expresión Génica , Melaninas/metabolismoRESUMEN
A suite of coal samples near a diabase dike was collected to investigate the structural and functional group evolution of a series of carbon materials prepared from thermally altered coals, explore the influence of thermal metamorphism distance on the structure of coal and its carbon material products, and divide the thermally altered zones. Using Fourier transform infrared and Raman studies, it was found that after demineralization, the aromatic parameters f ar H and I of the coal structure slightly increase, while the aliphatic parameters CH2/CH3 and oxidation parameter 'C' slightly decrease, and the degree of order of the coal structure increases. Graphitization can greatly improve aromatic parameters, eliminate aliphatic structures, and enhance orderliness. However, after oxidation and reduction, the aromatic parameters and ordering degree of graphene decrease. Except for the sample closely attached to the dike, the coal-based graphene yield of the other samples first decreases and then stabilizes with the increase of distance from the dike, which is consistent with the trend of changes in the reflectance of raw coal. The thermally altered distance affects the structural changes of coal and carbon material products. The coal attached to the dike has been damaged and polluted, and the aromaticity and orderliness of the prepared carbon material products are relatively poor. The aromaticity and orderliness of coal-based products prepared from other thermally altered coals are relatively high and increase with the closer the thermally altered distance. Based on the characterized parameters of coal samples and products with distance from the dike, the sampling area is divided into four zones, including abnormally altered zone, normal altered zone, transition zone, and original coal zone. Among them, the yield and quality of coal-based graphene prepared from coal in the normal altered zone are the highest, an ideal raw material collection area for making coal-based graphene.
RESUMEN
Delta-12 fatty acid desaturases (FAD2s) actively regulate stress responses and cell differentiation in living organisms. In this study, six homologous FAD2 genes were identified based on the genome sequence of Lentinula edodes. Then, the six FAD2 protein sequences were analyzed using bioinformatics tools, including ExPASy ProtParam, SignalP, TMHMM, and TargetP. These analyses were performed to predict the physical and chemical properties, signal peptides, and transmembrane and conserved domains of these proteins. The polypeptide sequences were aligned, and a maximum likelihood phylogenetic tree was constructed using MEGA 7.0 software to elucidate the phylogenetic relationships between homologous FAD2 sequences. The results demonstrated that the FAD2 proteins contained three conserved histidine-rich regions (HXXXH, HXXHH, and HXXHH), which included eight histidine residues. The linoleic acid content and FAD2 enzyme activity were further analyzed, and the levels in the mutagenic heat-tolerant strain 18N44 were lower than those in the wild-type strain 18. Interestingly, the expression levels of the FAD2-2 and FAD2-3 genes under heat stress in strain 18N44 were lower than those in strain 18. These findings indicated that FAD2-2 and FAD2-3 may play major roles in the synthesis of linoleic acid during heat stress.
RESUMEN
The impact of fracturing on coal seams includes not only mechanical alterations but also physical and chemical alterations. The coupling of these alterations plays an important role in the recovery of coalbed methane (CBM). 13C nuclear magnetic resonance (13C NMR), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and molecular models were conducted on coals with different degrees of fracturing to study the alterations in the coal structure during CBM stimulation. The 13C NMR results show that some aliphatic chains and oxygen-containing functional groups were shed, and some aliphatic rings were broken due to the effects of fracturing, which cause an increase in the relative content of aromatic carbon. The HRTEM and XRD results indicate that fracturing will result in a decrease in the interlayer spacing d002, an increase in the stacking height Lc, and a slight increase in the layer size La. Moreover, the orientation distribution in fractured coal was more intensive. The construction of molecular models also verified the variation of surface functional groups and interlayer spacing. Based on these analyses and molecular models, the alteration mechanism of functional groups and aromatic structures under fracturing was demonstrated. This study clarifies the alteration of the coal structure by fracturing and has important implications for the recovery of CBM.
RESUMEN
OBJECTIVE AND DESIGN: We aimed to investigate the molecular mechanism underlying formaldehyde (FA)-induced congenital heart disease (CHD) using in vitro and in vivo models. MATERIALS AND SUBJECTS: Neonatal rat heart tissues and H9C2 cells were used for in vitro studies, while FA-exposed new-born rats were used for in vivo studies. TREATMENT: H9C2 cells were exposed to FA concentrations of 0, 50, 100 and 150 µM/mL for 24 h. METHODS: Whole transcriptome gene sequencing identified differentially expressed miRNAs in neonatal rat heart tissues, while Real-time quantitative PCR (RT-qPCR) assessed miR-871-3p and Megf8 expression. RNA pull-down and dual-luciferase reporter assays determined miR-871-3p and Megf8 relationships. Inflammatory cytokine expression was assessed by western blotting. A FA-induced CHD model was used to validate miR-871-3p regulatory effects in vivo. RESULTS: We identified 89 differentially expressed miRNAs, with 28 up-regulated and 61 down-regulated (fold change ≥ 2.0, P < 0.05). Inflammation (interleukin) and signalling pathways were found to control FA-induced cardiac dysplasia. miR-871-3p was upregulated in FA-exposed heart tissues, modulated inflammation, and directly targeted Megf8. In vivo experiments showed miR-871-3p knockdown inhibited FA-induced inflammation and CHD. CONCLUSION: We demonstrated miR-871-3p's role in FA-induced CHD by targeting Megf8, providing potential targets for CHD intervention and improved diagnosis and treatment strategies.
Asunto(s)
Formaldehído , Cardiopatías , Proteínas de la Membrana , MicroARNs , Animales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratas , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/toxicidad , Modelos Animales de Enfermedad , Formaldehído/metabolismo , Formaldehído/toxicidad , Expresión Génica , Técnicas de Silenciamiento del Gen , Corazón/efectos de los fármacos , Corazón/fisiopatología , Cardiopatías/congénito , Cardiopatías/metabolismo , Cardiopatías/patología , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-DawleyRESUMEN
Little is known about encouraging help-seeking in non-English speaking settings and relatively little research has been directed to facilitate help-seeking among Chinese-speaking people. This study examined the effects of a multimedia intervention on barriers, attitudes, and intentions for seeking counseling in China. The multimedia intervention was informed by prior empirical research on models of help-seeking for counseling. A total of 200 participants were randomly assigned to one of the two conditions: (1) a help-seeking media-exposed intervention group and (2) a control group, who watched a hospital advertisement that was unrelated to mental health help-seeking. Results indicated that the intervention was effective at increasing both positive attitudes toward therapy and intentions to seek therapy. The intervention also improved participants' perceptions about treatment accessibility. This intervention is available and can be a resource for Chinese language populations (both within China and other countries), especially for immigrants, rural, and persons who might benefit from mental health treatments such as psychotherapy.
Asunto(s)
Multimedia , Aceptación de la Atención de Salud , Humanos , Aceptación de la Atención de Salud/psicología , Salud Mental , Estudiantes/psicología , LenguajeRESUMEN
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: ⢠Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. ⢠Some genes show a biparental role-divergent expression at mycelial growth stage. ⢠Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
RESUMEN
With the global shortages of animal protein foods, mycoprotein as a low-cost alternative source of protein by its high-protein and low-fat content has become a development trend. Lentinula edodes (L. edodes) is a healthy food with high protein and low fiber. This work evaluated the nutritional value of L. edodes mycelia, and determined the composition and contents of fatty acids and amino acids. Eleven saturated fatty acids (SFAs) and 12 unsaturated fatty acids (UFAs) were detected in the mycelia of L. edodes. The UFA content accounted for 75.7% and 73.1% of the total fatty acid content in the mycelia of strains 18 and 18N44, respectively. Linoleic acid was the major polyunsaturated fatty acid (PUFA) in the mycelia, accounting for 91.0% and 86.3% of the UFAs, respectively. The mycelia of the two strains contained 17 types of amino acids, and the essential amino acids were sufficient (357.92 ± 0.42 and 398.38 ± 4.52 mg/g pro, respectively), both close to the WHO/FAO reference protein pattern value. The most abundant essential amino acid was Lys, and the limiting amino acids were Met + Cys and Ile, respectively. The SRC values in the mycelia of the two strains were 68.07 and 54.86, and the EAAI values were 67.70 and 74.42, respectively, both being close to those of ovalbumin. It is concluded that L. edodes mycelia are rich in easily absorbed high-quality proteins and PUFAs, and can be used as a source for meat analog required by vegetarians. This study provides a scientific basis for the further utilization of mycelial resources.
RESUMEN
Despite its low frequency, osteosarcoma is one of the deadliest malignancies in children and adolescents. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling activation and epithelial-to-mesenchymal transition (EMT) are critical issues during osteosarcoma development. This study found long intergenic non-protein coding RNA 1060 (LINC01060) to be an EMT-related long non-coding RNA (lncRNA) up-regulated in osteosarcoma; higher LINC01060 expression was linked to a worse prognosis in osteosarcoma patients. In vitro, knocking down LINC01060 significantly inhibits osteosarcoma cell malignant behaviors, including hyperproliferation, invasion, migration, and EMT. In vivo, LINC01060 knockdown inhibited tumor growth and metastasis, and suppressed PI3K and Akt phosphorylation. In osteosarcoma cells, Akt agonist SC79 exerted opposite effects to those of LINC01060 knockdown through the promotion of cell viability, cell migration, and cell invasion. Moreover, the Akt agonist SC79 partially eliminated LINC01060 knockdown effects on osteosarcoma cells, suggesting that LINC01060 exerts its effects through the PI3K/Akt signaling. Therefore, it is deduced that LINC01060 is overexpressed in osteosarcoma. In vitro, LINC01060 knockdown inhibits cancer cell malignant behaviors; in vivo, LINC01060 knockdown inhibits tumor development and metastasis. The PI3K/Akt signaling is involved in LINC01060 functions in osteosarcoma.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Niño , Humanos , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN no Traducido/genéticaRESUMEN
Ultraviolet lithography is a very promising technology used for the batch fabrication of biomedical microswimmers. However, creating microswimmers that can swim at low Reynolds number using biocompatible materials while retaining strong magnetic properties and excellent biomedical functionality is a great challenge. Most of the previously reported biomedical microswimmers possess either strong magnetic properties by using non-biocompatible nickel coating or good biocompatibility by using iron oxide particle-embedded hydrogel with weak magnetism, but not both. Alternatively, iron oxide nanoparticles can be coated on the surface of microswimmers to improve magnetic properties; however, this method limited the usability of the microswimmers' surfaces. To address these shortcomings, this work utilized an in situ synthesis technique to generate high magnetic content inside hydrogel-based achiral planar microswimmers while leaving their surfaces free to be functionalized for SERS detection. The hydrogel matrices of the magnetically actuated hydrogel-based microswimmers were first prepared by ultraviolet lithography. Then, the high concentration of iron oxide was achieved through multiple continuous in situ coprecipitation cycles. Finally, the SERS detection capability of magnetically actuated hydrogel-based microswimmers was enabled by uniformly growing silver nanoparticles on the surface of the microswimmers. In the motion control tests, the microswimmers showed a high swimming efficiency, high step-out frequency, and consistent synchronized motion. Furthermore, the magnetically actuated hydrogel-based microswimmers were able to improve the detection efficiency of analytes under magnetic guidance.
RESUMEN
Cell delivery using magnetic microswimmers is a promising tool for targeted therapy. However, it remains challenging to rapidly and uniformly manufacture cell-loaded microswimmers that can be assembled into cell-supporting structures at diseased sites. Here, rapid and uniform manufacturable 2D magnetic achiral microswimmers with pores were fabricated to deliver bone marrow mesenchymal stem cells (BMSCs) to regenerate articular-damaged cartilage. Under actuation with magnetic fields, the BMSC-loaded microswimmers take advantage of the achiral structure to exhibit rolling or swimming motions to travel on smooth and rough surfaces, up inclined planes, or in the bulk fluid. Cell viability, proliferation, and differentiation tests performed days after cell seeding verified the microswimmers' biocompatibility. Long-distance targeting and in situ assemblies into 3D cell-supporting structures with BMSC-loaded microswimmers were demonstrated using a knee model and U-shaped wells. Overall, combining the advantages of preparing an achiral 2D structured microswimmer with magnetically driven motility results in a platform for cell transport and constructing 3D cell cultures that can improve cell delivery at lesion sites for biomedical applications.
RESUMEN
AIM: The main aim of this study is to improve the solubility, reduce side effects and increase the therapeutic efficacy of CSL by using functionalized graphene oxide as a carrier, to fulfill chemo-photothermal therapy. BACKGROUND: Celastrol (CSL), which is extracted from the traditional Chinese medicinal plant Tripterygium wilfordii, has reported significant antitumor activity in vitro and in vivo cancer models. However, disadvantages with regard to solubility, short plasma half-life and toxicity hinder its use in pharmaceutical application. Nanocarrier delivery system could be employed to improve the biochemical and pharmacokinetic performance of CSL. Among numerous nanocarriers, graphene oxide is one of the most promising nanocarriers due to its intrinsic physical and chemical properties and good biocompatibility. OBJECTIVE: Here, we employed a PEGylated reduced nanographene oxide CSL complex (nrGO-PEG/CSL) as a new drug delivery system to achieve highly efficient synergistic chemo/photothermal therapy. METHODS: A functionalized nrGO-PEG was synthesized and the loading capacity of CSL, photothermal effect and release efficiency under different pH and NIR irradiation were measured in the first stage of work. In vitro and in vivo anticancer effects of prepared nrGO-PEG/CSL complex were evaluated on 4T1 cells and 4T1 tumor-bearing mice, respectively, with the association of NIR laser irradiation. RESULTS: The functionalized nrGO-PEG exhibited excellent drug loading capacity of CSL (20.76 mg/mg GO) and photothermal effect (~3.0 -fold increment over unreduced nGO-PEG). Loaded CSL could be efficiently released from nrGO-PEG/CSL complex by NIR irradiation in vitro. In vivo study performed on 4T1 tumor-bearing mice proved that nrGO-PEG/CSL with NIR laser irradiation shows superior anticancer effects. CONCLUSION: The experimental data demonstrated that the nrGO-PEG/CSL-mediated chemo/photothermal combination therapy was more cytotoxic to cancer cells than only chemotherapy or photothermal treatment, reducing the occurrence of tumor metastasis. Therefore, nrGO-PEG/CSL-mediated chemo/photothermal is expected to be a promising treatment for synergistic cancer therapy.
Asunto(s)
Neoplasias , Óxidos , Animales , Ratones , Óxidos/farmacología , Óxidos/química , Terapia Fototérmica , Fototerapia , Polietilenglicoles/químicaRESUMEN
Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, bilayer magnetic microrobots with an achiral planar design were fabricated using a biocompatible natural polymer and Fe3O4 nanoparticles through the photolithography by applying the layer-by-layer method. The microrobots consisted of a magnetic bottom layer and a photo-crosslinked chitosan top layer. The SEM results showed that the microrobot processed the L-shaped planar structure with the average width, length, and thickness of 99.18 ± 5.11 µm, 189.56 ± 11.37 µm, and 23.56 ± 4.08 µm, respectively. Moreover, microrobots actuated using a three-dimensional (3D) Helmholtz coil system was characterized and reached up to an average maximum velocity of 325.30 µm/s and a step-out frequency of 14 Hz. Furthermore, the microrobots exhibited excellent cell biocompatibility towards L929 cells in the CCK-8 assay. Therefore, the development of bi-layered chitosan-based microrobots offers a general solution for using magnetic microrobots in biomedical applications by providing an easy-to-fabricate, highly mobile microrobotic platform with the incorporation of biocompatible natural polymers for enhanced biocompatibility.
RESUMEN
Biohybrid micro/nanorobots have demonstrated improved therapeutic outcomes for targeting and treating diseases in preclinical trials. However, in vivo applications remain challenging due to a lack of sufficient targeting. Based on evidence that immune cells play a role in the immune modulation in the tumor microenvironment, we developed M1 macrophage membrane-coated magnetic photothermal nanocomplexes (MPN) for photoacoustic (PA) imaging-guided tumor therapy. The MPN were able to inherit the protein from the original macrophage cells and exert a targeted immunosuppression role. Integrating black phosphorus quantum dots and DOX also greatly enhanced reactive oxygen species generation and chemo-phototherapy efficacy. The results suggest that the MPN can be employed as an excellent tumor immunotargeting nanorobotic platform for modulating the tumor microenvironment under PA imaging and magnetic guidance and, thus, exert synergistic therapeutic efficacies.
Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Biomimética , Nanopartículas/uso terapéutico , Hipertermia Inducida/métodos , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Fenómenos Magnéticos , Doxorrubicina/uso terapéutico , Microambiente TumoralRESUMEN
BACKGROUND: Helicobacter pylori (H. pylori) infects about 50% of the world population and is the major cause of chronic gastritis, peptic ulcers, and gastric cancer. Chronic H. pylori infection induces gastric mucosal precancerous lesions mostly in adulthood, and it is debatable whether these pathological conditions can occur in childhood and adolescents as well. Since this is a critical issue to determine if intervention should be offered for this population group, we investigated the gastric mucosal precancerous lesions in pediatric patients in an area in central China with a high prevalence of H. pylori and gastric cancer. AIM: To investigate the relationship of H. pylori infection and gastric mucosal precancerous lesions in children and adolescents in central China. METHODS: We screened 4258 ward-admitted children and adolescent patients with upper gastrointestinal symptoms, and finally enrolled 1015 pediatric patients with H. pylori infection and endoscopic and histological data. H. pylori infection status was determined by rapid urease test and histopathological examination. Both clinical and pathological data were collected and analyzed retrospectively. Occurrence of gastric mucosal precancerous lesions, inflammatory activity and degree of inflammatory cell infiltration between H. pylori-positive and -negative groups were compared. RESULTS: Among the 1015 eligible children and adolescents, the overall H. pylori infection rate was 84.14% (854/1015). The infection rate increased with age. The incidence of gastric mucosal precancerous lesions in H. pylori-infected children was 4.33% (37/854), which included atrophic gastritis (17 cases), intestinal metaplasia (11 cases) and dysplasia (9 cases). In H. pylori-negative patients, only 1 atrophic gastritis case [0.62%, (1/161)] was found (P < 0.05). Active inflammation in H. pylori-infected patients was significantly higher than that in non-infected patients, and the H. pylori-infected group showed more severe lymphocyte and neutrophil granulocyte infiltration (P < 0.001). In addition, endoscopy revealed that the most common findings in H. pylori-positive patients were antral nodularity, but in H. pylori-negative patients only superficial gastritis was observed. CONCLUSION: In children and adolescents, gastric mucosal precancerous lesions occurred in 4.33% of H. pylori-infected patients in central China. These cases included atrophic gastritis, intestinal metaplasia, and dysplasia. The data revealed an obvious critical issue requiring future investigation and intervention for this population group.
Asunto(s)
Gastritis Atrófica , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Adolescente , Adulto , Niño , Mucosa Gástrica/patología , Gastritis/patología , Gastritis Atrófica/patología , Infecciones por Helicobacter/patología , Humanos , Metaplasia/patología , Lesiones Precancerosas/epidemiología , Lesiones Precancerosas/patología , Estudios Retrospectivos , Neoplasias Gástricas/patología , UreasaRESUMEN
Purpose: To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs' (lncRNAs') anti-inflammation function derived by BMSC-Exos. Materials and Methods: High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and co-expression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo. Results: Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro. Conclusion: Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.
RESUMEN
With the development and progress of nanotechnology, the prospect of using nanorobots to achieve targeted drug delivery is becoming possible. Although nanorobots can potentially improve nano-drug delivery systems, there remains a significant challenge to fabricating magnetically controllable nanorobots with a size suitable for drug delivery in complex in vivo environments. Most of the current research focused on the preparation and functionalization of microscale and milliscale robots due to the relative difficulties in fabricating nanoscale robots. To address this problem and move towards in vivo applications, this study uses electron beam lithography to fabricate achiral planar L-shaped nanorobots that are biocompatible with immune cells. Their minimal planar geometry enabled nanolithography to fabricate nanorobots with a minimum feature size down to 400 nm. Using an integrated imaging and control system, the locomotive behavior of the L-shaped nanorobots in a fluidic environment was studied by examining their velocity profiles and trajectories. Furthermore, the nanorobots exhibit excellent cell compatibility with various types of cells, including macrophage cells. Finally, the long-term cell culture medium immersion test demonstrated that the L-shaped nanorobots have robust stability. This work will demonstrate the potential to use these nanorobots to operate in vivo without triggering immune cell responses.
Asunto(s)
Electrones , Nanotecnología , Sistemas de Liberación de Medicamentos , Macrófagos , MagnetismoRESUMEN
In this paper, a multi-strategy adaptive comprehensive learning particle swarm optimization algorithm is proposed by introducing the comprehensive learning, multi-population parallel, and parameter adaptation. In the proposed algorithm, a multi-population parallel strategy is designed to improve population diversity and accelerate convergence. The population particle exchange and mutation are realized to ensure information sharing among the particles. Then, the global optimal value is added to velocity update to design a new velocity update strategy for improving the local search ability. The comprehensive learning strategy is employed to construct learning samples, so as to effectively promote the information exchange and avoid falling into local extrema. By linearly changing the learning factors, a new factor adjustment strategy is developed to enhance the global search ability, and a new adaptive inertia weight-adjustment strategy based on an S-shaped decreasing function is developed to balance the search ability. Finally, some benchmark functions and the parameter optimization of photovoltaics are selected. The proposed algorithm obtains the best performance on 6 out of 10 functions. The results show that the proposed algorithm has greatly improved diversity, solution accuracy, and search ability compared with some variants of particle swarm optimization and other algorithms. It provides a more effective parameter combination for the complex engineering problem of photovoltaics, so as to improve the energy conversion efficiency.
RESUMEN
2-Deoxy-D-glucose (2-DG) is a glucose analog used as a promising anticancer agent. It exerts its effects by inhibiting the glycolytic energy metabolism to deplete cells of energy. The larval stage of Echinococcus relies on glycolysis for energy production. Therefore, in this study, we investigated the in vitro and in vivo efficacy of 2-DG against the larval stage of Echinococcus granulosus and E. multilocularis. 2-DG exhibited significant time- and dose-dependent effects against in vitro cultured E. granulosus protoscoleces and E. multilocularis metacestodes. A daily oral administration of 500 mg/kg 2-DG in E. multilocularis-infected mice effectively reduced the weight of metacestodes. Notably, the combination treatment, either 2-DG (500 mg/kg/day) + albendazole (ABZ) (200 mg/kg/day) or 2-DG (500 mg/kg/day) + half-dose of ABZ (100 mg/kg/day), exhibited a potent therapeutic effect against E. multilocularis, significantly promoting the reduction of metacestodes weight compared with the administration of 2-DG or ABZ alone. Furthermore, the combination significantly promoted apoptosis of the cells of metacestodes and inhibited glycolysis in metacestodes, compared with the administration of 2-DG or ABZ alone. In conclusion, 2-DG exerts an effective activity against the larval stage of Echinococcus. Thus, it may be a promising anti-Echinococcus drug, and its combination with ABZ may provide a new strategy for the treatment of echinococcosis in humans.
Asunto(s)
Equinococosis , Echinococcus granulosus , Echinococcus multilocularis , Albendazol/farmacología , Albendazol/uso terapéutico , Animales , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Equinococosis/tratamiento farmacológico , Glucosa , Humanos , Larva , RatonesRESUMEN
To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.