Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Int ; 183: 108369, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070437

RESUMEN

Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3--N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3--N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3--N at different COD/N ratios.


Asunto(s)
Microbiota , Óxido Nitroso , Óxido Nitroso/metabolismo , Desnitrificación , Humedales , Nitrógeno , Nitratos
2.
Sci Total Environ ; 903: 166489, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611707

RESUMEN

The denitrification process in constructed wetlands (CWs) is responsible for most of the nitrous oxide (N2O) emissions, which is an undesired impact on the ecology of sewage treatment systems. This study compared three types of CWs filled with gravel (CW-B), gravel mixed with natural pyrite (CW-BF), or biochar (CW-BC) to investigate their impact on microbiota and genetic potential for N2O generation during denitrification under varying chemical oxygen demand (COD) to nitrate (NO3--N) ratios. The results showed that natural pyrite and biochar were superior in enhancing COD (90.6-91.2 %) and NO3--N removal (90.0-93.5 %) in CWs with a COD/NO3--N ratio of 9. The accumulation of NO2--N during the denitrification process was the primary cause of N2O emission, with the fluxes ranging from 95.6-472.0 µg/(m2·h) in CW-B, 92.9-400 µg/(m2·h) in CW-BF, and 54.0-293.3 µg/(m2·h) in CW-BC. The addition of biochar significantly reduced N2O emissions during denitrification, while natural pyrite had a lesser inhibitory effect on N2O emissions. The three types of substrates also influenced the structure of microbiota in the biofilm, with natural pyrite enriched nitrogen transformation microorganisms, especially for denitrifiers. Notably, biochar significantly enhanced the abundance of nosZ and the ratio of nosZ/(norB + norC), which are critical factors in reducing N2O emissions from CWs. Overall, the results suggest that the biochar-induced changes in microbiota and genetic potential during denitrification play a significant role in preventing N2O production in CWs, especially when treating sewage with a relatively high COD/NO3--N ratio.

3.
J Hazard Mater ; 446: 130692, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586330

RESUMEN

Bio-toxic inorganic pollutants, e.g., fluorine (F) and heavy metals (HMs), in wastewaters are the potential threats to nitrate (NO3--N) reduction by microorganisms in constructed wetlands (CWs). Selection of suitable substrate with high F and HMs adsorption efficiency and capacity is a potential alternative for simultaneous removal of these pollutants in CWs. Herein, this study investigated the feasibility of applying hydroxyapatite (HA)-gravel media for F and HMs adsorption and its effect on NO3--N reduction in CWs (HA CWs) by comparing the CWs filled with gravel substrate (CK CWs). The results indicated that the removal efficiency of F, Cr, As, and NO3--N in HA CWs increased by 113.6-, 3.3-, 2.7-, and 0.6-folds, respectively, compared to CK CWs. The NO3--N reduction rate decreased by 11-46% in CK CWs after the presence of F and HMs in influent, while for HA CWs, it was only 13-22%. Excellent F and HMs adsorption capacity of HA substrate availed for wetland plants resisting F/HMs toxicity and making catalase activity lower. The HA substrate in CWs resulted in the certain succession of nitrogen-transforming bacteria, e.g., nitrifiers (Nitrospira) and denitrifiers (Thiobacillus and Desulfobacterium). More importantly, key functional genes, including nirK/nirS, korA/korB, ChrA/ChrD, arsA/arsB, catalyzing the processes of nitrogen biotransformation, energy metabolism, NO3--N and metal ions reduction were also enriched in HA CWs. This study highlights HA substrate reduce the inhibitive effect of F and HMs on NO3--N reduction, and provides new insights into how microbiota structurally and functionally respond to different substrates in CWs.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nitratos , Humedales , Flúor , Bacterias/metabolismo , Nitrógeno/metabolismo , Hidroxiapatitas , Eliminación de Residuos Líquidos/métodos
4.
Environ Res ; 213: 113716, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35718165

RESUMEN

Understanding of mechanisms in nitrous oxide (N2O) emission from constructed wetland (CW) is particularly important for the establishment of related strategies to reduce greenhouse gas (GHG) production during its wastewater treatment. However, plant biomass accumulation, microbial communities and nitrogen transformation genes distribution and their effects on N2O emission from CW as affected by different nitrogen forms in aquatic environment have not been reported. This study investigated the interactive effects of aquatic nitrogen and plant biomass on N2O emission from subsurface CW with NH4+-N (CW-A) or NO3--N (CW-B) wastewater. The experimental results show that NH4+-N and NO3--N removal efficiencies from CW mesocosms were 49.4% and 87.6%, which indirectly lead to N2O emission fluxes of CW-A and CW-B maintained at 213 ± 67 and 462 ± 71 µg-N/(m2·h), respectively. Correlation analysis of nitrogen conversion dynamic indicated that NO2--N accumulation closely related to N2O emission from CW. Aquatic NH4+-N could up-regulate plant biomass accumulation by intensifying citric acid cycle, glycine-serine-threonine metabolism etc., resulting in more nitrogen uptake and lower N2O emission/total nitrogen (TN) removal ratio of CW-A compared to CW-B. Although the abundance of denitrifying bacteria and N2O reductase nosZ in CW-B were significantly higher than that of CW-A, after fed with mixed NH4+-N and NO3--N influent, N2O fluxes and N2O emission/TN removal ratio in CW-A were extremely close to that of CW-B, suggesting that nitrogen form rather than nitrogen transformation microbial communities and N2O reductase nosZ determines N2O emission from CW. Hence, the selection of nitrate-loving plants will play an important role in inhibiting N2O emission from CW.


Asunto(s)
Óxido Nitroso , Humedales , Biomasa , Desnitrificación , Nitrógeno/metabolismo , Oxidorreductasas/metabolismo , Plantas/metabolismo
5.
Chemosphere ; 117: 502-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25259785

RESUMEN

The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.


Asunto(s)
Magnoliopsida/metabolismo , Nitrógeno/metabolismo , Compuestos Orgánicos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Humedales , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA