RESUMEN
Toxoplasma gondii is an intracellular parasitic protozoan that poses a significant risk to the fetus carried by a pregnant woman or to immunocompromised individuals. T. gondii tachyzoites duplicate rapidly in host cells during acute infection through endodyogeny. This highly regulated division process is accompanied by complex gene regulation networks. TgAP2XII-9 is a cell cycle-regulated transcription factor, but its specific role in the parasite cell cycle is not fully understood. In this study, we demonstrate that TgAP2XII-9 is identified as a nuclear transcription factor and is dominantly expressed during the S/M phase of the tachyzoite cell cycle. Cleavage Under Targets and Tagmentation (CUT&Tag) results indicate that TgAP2XII-9 targets key genes for the moving junction machinery (RON2, 4, and 8) and daughter cell inner membrane complex (IMC). TgAP2XII-9 deficiency resulted in a significant downregulation of rhoptry proteins and rhoptry neck proteins, leading to a severe defect in the invasion and egress efficiency of tachyzoites. Additionally, the loss of TgAP2XII-9 correlated with a substantial downregulation of multiple IMC and apicoplast proteins, leading to disorders of daughter bud formation and apicoplast inheritance and further contributing to the inability of cell division and intracellular proliferation. Our study reveals that TgAP2XII-9 acts as a critical S/M-phase regulator that orchestrates the endodyogeny and apicoplast division in T. gondii tachyzoites. This study contributes to a broader understanding of the complexity of the parasite's cell cycle and its key regulators. IMPORTANCE: The intracellular apicoplast parasite Toxoplasma gondii poses a great threat to the public health. The acute infection of T. gondii tachyzoites relies on efficient invasion by forming a moving junction structure and also fast replication by highly regulated endodyogeny. This study shows that an ApiAP2 transcription factor, TgAP2XII-9, acts as an activator for the S/M-phase gene expression, including genes related to daughter buds and moving junction formation. Loss of TgAP2XII-9 results in significant growth defects and disorders in endodyogeny and apicoplast inheritance of the parasites. Our results provide valuable insights into the transcriptional regulation of the parasite cell cycle and invading machinery in T. gondii.
Asunto(s)
Apicoplastos , Proteínas Protozoarias , Toxoplasma , Factores de Transcripción , Animales , Humanos , Ratones , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , División Celular/genética , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reproducción Asexuada/genética , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Toxoplasma gondii is an intracellular parasite that is important in medicine and veterinary science and undergoes distinct developmental transitions in its intermediate and definitive hosts. The switch between stages of T. gondii is meticulously regulated by a variety of factors. Previous studies have explored the role of the microrchidia (MORC) protein complex as a transcriptional suppressor of sexual commitment. By utilizing immunoprecipitation and mass spectrometry, constituents of this protein complex have been identified, including MORC, Histone Deacetylase 3 (HDAC3), and several ApiAP2 transcription factors. Conditional knockout of MORC or inhibition of HDAC3 results in upregulation of a set of genes associated with schizogony and sexual stages in T. gondii tachyzoites. Here, our focus extends to two primary ApiAP2s (AP2XII-1 and AP2XI-2), demonstrating their significant impact on the fitness of asexual tachyzoites and their target genes. Notably, the targeted disruption of AP2XII-1 and AP2XI-2 resulted in a profound alteration in merozoite-specific genes targeted by the MORC-HDAC3 complex. Additionally, considerable overlap was observed in downstream gene profiles between AP2XII-1 and AP2XI-2, with AP2XII-1 specifically binding to a subset of ApiAP2 transcription factors, including AP2XI-2. These findings reveal an intricate cascade of ApiAP2 regulatory networks involved in T. gondii schizogony development, orchestrated by AP2XII-1 and AP2XI-2. This study provides valuable insights into the transcriptional regulation of T. gondii growth and development, shedding light on the intricate life cycle of this parasitic pathogen.
Asunto(s)
Regulación de la Expresión Génica , Proteínas Protozoarias , Toxoplasma , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitologíaRESUMEN
The flow of calcium ions (Ca2+) is involved in numerous vital activities of Toxoplasma gondii. Calreticulin is a type of Ca2+-binding protein in the endoplasmic reticulum (ER) that is involved in Ca2+ signaling pathway regulation, Ca2+ storage, and protein folding. In this work, the calreticulin (CALR), a protein predicted to possess a conserved domain of calreticulin in T. gondii, was characterized. The CALR localized in the ER. Using reverse genetics, we discovered that CALR is not necessary for the lytic cycle, including invasion and replication. However, depletion of CALR affected microneme secretion triggered by A23187, which is a Ca2+ ionophore used to increase cytoplasmic Ca2+ concentration. Furthermore, we discovered that CALR influences Ca2+ release. Transcriptomic comparison between Δcalr and Δku80 parasites showed that 226 genes in the Δcalr parasites were significantly downregulated (p < 0.05). The cellular biological functions of the downregulated genes were mainly involved in calmodulin-dependent protein kinase pathways. Furthermore, in the absence of CALR, tachyzoites were still able to cause acute infection in mice. These results imply that by influencing ER Ca2+ release content, CALR may further impair the ionophore-induced secretion of the parasite. However, this protein is not required for the completion of the parasite's lytic cycle or for the acute virulence of the parasite.
Asunto(s)
Calreticulina , Proteínas Protozoarias , Toxoplasma , Animales , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplásmico , Ionóforos , Micronema , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
Avian coccidiosis caused by Eimeria is a serious parasitic disease that poses a threat to the poultry industry. Currently, prevention and treatment mainly rely on the administration of anticoccidials and live oocyst vaccines. However, the prevalence of drug resistance and the inherent limitations of live vaccines have driven the development of novel vaccines. In this study, the surface protein (Et-SAG14), a previously annotated rhoptry protein (Eten5-B), and a gametocyte phosphoglucomutase (Et-PGM1) were characterized and the vaccine potential of the recombinant proteins were evaluated. Et-SAG14 was dispersed in the form of particles in the sporozoite and merozoite stages, whereas Et-PGM1 was distributed in the apical part of the sporozoite and merozoite stages. The previously annotated rhoptry Eten5-B was found not to be located in the rhoptry but distributed in the cytoplasm of sporozoites and merozoites. Immunization with rEten5-B significantly elevated host interferon gamma (IFN-γ) and interleukin 10 (IL-10) transcript levels and exhibited moderate anticoccidial effects with an anticoccidial index (ACI) of 161. Unexpectedly, both recombinant Et-SAG14 and Et-PGM1 immunization significantly reduced host IFN-γ and IL-10 transcription levels, and did not show protection against E. tenella challenge (ACI < 80). These results suggest that the rEten5-B protein can trigger immune protection against E. tenella and may be a potential and effective subunit vaccine for the control of coccidiosis in poultry.
Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Vacunas , Animales , Interleucina-10 , Pollos , Proteínas Recombinantes , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Esporozoítos , Interferón gammaRESUMEN
Toxoplasma gondii is a pathogen that poses a serious threat to human health and causes significant economic losses to the global livestock industry. The prevalence of toxoplasmosis infection has been reported to be high in humans and animals around the world, but the occurrence of the disease has not yet been reported in water buffaloes in Guangxi Zhuang Autonomous Region, southern China. To understand the overall seroprevalence of T. gondii infection in Guangxi, a total of 1041 water buffalo and 114 cat serum samples were examined using an indirect enzyme-linked immunosorbent assay (I-ELISA). Of the 1041 water buffaloes analyzed, an overall seroprevalence of 52.9% (551/1041) was obtained, with year, season, and city location being significant factors affecting the rate of T. gondii infection in water buffaloes (P < 0.001). The results also revealed a high seroprevalence of 57% (65/114) in cats. Given that buffalo milk and meat products are vital food sources, these findings suggest that toxoplasmosis in water buffaloes may be a public health threat. This study provides the first T. gondii seroprevalence data in Guangxi, which could contribute to the prevention and control of toxoplasmosis in the region.
Asunto(s)
Bison , Toxoplasma , Toxoplasmosis Animal , Gatos , Humanos , Animales , Búfalos , Toxoplasmosis Animal/epidemiología , Estudios Seroepidemiológicos , China/epidemiología , Anticuerpos Antiprotozoarios , Factores de RiesgoRESUMEN
Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 µM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.
Asunto(s)
Enfermedades Mitocondriales , Toxoplasma , Toxoplasmosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Enfermedades Mitocondriales/veterinaria , Toxoplasma/genética , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitologíaRESUMEN
Worldwide distributed coccidiosis is caused by infection of both Eimeria species and Cystoisospora in the host intestine and causes huge economic losses to the livestock industry, especially the poultry industry. The control of such diseases relies mainly on chemoprophylaxis with anticoccidials, which has led to a very common drug resistance in this field. However, the genetic mechanisms underlying resistance to many anticoccidial drugs remain unknown. In this study, strains of E. tenella resistant to 250 mg/kg monensin were generated and characterized. Forward genetic approaches based on pooled genome sequencing, including experimental evolution and linkage group selection, were used to locate candidate targets responsible for resistance to monensin and diclazuril in E. tenella. A total of 16 nonsynonymous mutants in protein-coding genes were identified in monensin-resistant strains, and two genomic regions with strong selection signals were also detected in diclazuril-resistant strains. Our study reveals the genetic characterization of the experimental evolution and linkage group selection in Eimeria species, and also provides important information that contributes to the understanding of the molecular mechanism of drug resistance in coccidia.
Asunto(s)
Coccidiosis , Coccidiostáticos , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Animales , Monensina/uso terapéutico , Eimeria tenella/genética , Coccidiostáticos/farmacología , Coccidiostáticos/uso terapéutico , Pollos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinariaRESUMEN
Intestinal coccidiosis is a common parasitic disease in livestock, caused by the infection of Eimeria and Cystoisospora parasites, which results in great economic losses to animal husbandry. Triazine compounds, such as toltrazuril and diclazuril, are widely used in the treatment and chemoprophylaxis of coccidiosis. Unfortunately, widespread drug resistance has compromised their effectiveness. Most studies have focused on prophylaxis and therapeutics with toltrazuril in flocks, while a comprehensive understanding of how toltrazuril treatment alters the transcriptome of E. tenella remains unknown. In this study, merozoites of E. tenella were treated in vitro with 0.5 µg/mL toltrazuril for 0, 1, 2 and 4 h, respectively. The gene transcription profiles were then compared by high-throughput sequencing. Our results showed that protein hydrolysis genes were significantly upregulated after drug treatment, while cell cycle-related genes were significantly downregulated, suggesting that toltrazuril may affect parasite division. The expression of redox-related genes was upregulated and elevated levels of ROS and autophagosomes were detected in the parasite after toltrazuril treatment, suggesting that toltrazuril may cause oxidative stress to parasite cells and lead to its autophagy. Our results provide basic knowledge of the response of Eimeria genes to toltrazuril and further analysis of the identified transcriptional changes can provide useful information for a better understanding of the mechanism of action of toltrazuril against Eimeria.
Asunto(s)
Coccidiosis , Coccidiostáticos , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Animales , Eimeria tenella/genética , Coccidiostáticos/farmacología , Coccidiostáticos/uso terapéutico , Pollos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Coccidiosis/tratamiento farmacológico , Triazinas/farmacología , Triazinas/uso terapéutico , Estrés Oxidativo , Autofagia/genéticaRESUMEN
Coccidiosis, caused by Eimeria species, results in huge economic losses to the animal industry. Dinitolmide, a veterinary-approved coccidiostat, has a wide anticoccidial spectrum with no effect on host immunity. However, the mechanism of its anticoccidial effects remains unclear. Here, we used an in vitro culture system of T. gondii to explore the anti-Toxoplasma effect of dinitolmide and its underlying mechanism against coccidia. We show that dinitolmide has potent in vitro anti-Toxoplasma activity with the half-maximal effective concentration (EC50) of 3.625 µg/ml. Dinitolmide treatment significantly inhibited the viability, invasion and proliferation of T. gondii tachyzoites. The recovery experiment showed that dinitolmide can completely kill T. gondii tachyzoites after 24 h of treatment. Morphologically abnormal parasites were observed after dinitolmide exposure, including asynchronous development of daughter cells and deficiency of parasite inner and outer membrane. Further electron microscopy results showed that the drug could damage the membrane structure of T. gondii. By comparative transcriptomic analysis, we found that genes related to cell apoptosis and nitric-oxide synthase were up-regulated after dinitolmide treatment, which might be responsible for parasite cell death. Meanwhile, many Sag-related sequence (srs) genes were down-regulated after treatment, which could be closely associated with the reduction of parasite invasion and proliferation capacity. Our study indicates that the coccidiostat dinitolmide has a potent inhibitory effect on T. gondii in vitro and provides insight into the mode of action of the drug.
Asunto(s)
Coccidiostáticos , Parásitos , Toxoplasma , Animales , Toxoplasma/genética , Coccidiostáticos/farmacología , Dinitolmida/farmacología , Parásitos/metabolismo , Óxido Nítrico Sintasa/metabolismoRESUMEN
Iron-sulfur [Fe-S] clusters are one of the most ancient and functionally versatile natural biosynthetic prosthetic groups required by various proteins involved in important metabolic processes, including the oxidative phosphorylation of proteins, electron transfer, energy metabolism, DNA/RNA metabolism, and protein translation. Apicomplexan parasites harbor two possible [Fe-S] cluster assembly pathways: the iron-sulfur cluster (ISC) pathway in the mitochondria and the sulfur formation (SUF) pathway in the apicoplast. Glutaredoxin 5 (GRX5) is involved in the ISC pathway in many eukaryotes. However, the cellular roles of GRX5 in apicomplexan parasites remain to be explored. Here, we showed that Neospora caninum mitochondrial GRX5 (NcGRX5) deficiency resulted in aberrant mitochondrial ultrastructure and led to a significant reduction in parasite proliferation and virulence in mice, suggesting that NcGRX5 is important for parasite growth in vitro and in vivo. Comparative proteomics and energy metabolomics were used to investigate the effects of NcGRX5 on parasite growth and mitochondrial metabolism. The data showed that disruption of NcGRX5 downregulated the expression of mitochondrial electron transport chain (ETC) and tricarboxylic acid cycle (TCA) cycle proteins and reduced the corresponding metabolic fluxes. Subsequently, we identified 23 proteins that might be adjacent to or interact with NcGRX5 by proximity-based protein labeling techniques and proteomics. The interactions between NcGRX5 and two iron-sulfur cluster synthesis proteins (ISCS and ISCU1) were further confirmed by coimmunoprecipitation assays. In conclusion, NcGRX5 is important for parasite growth and may regulate mitochondrial energy metabolism by mediating the biosynthesis of iron-sulfur clusters. IMPORTANCE Iron-sulfur [Fe-S] clusters are among the oldest and most ubiquitous prosthetic groups, and they are required for a variety of proteins involved in important metabolic processes. The intracellular parasites in the phylum Apicomplexa, including Plasmodium, Toxoplasma gondii, and Neospora caninum, harbor the ISC pathway involved in the biosynthesis of [Fe-S] clusters in mitochondria. These cofactors are required for a variety of important biological processes. However, little is known about the role of oxidoreductase glutaredoxins in these parasites. Our data indicate that NcGRX5 is an essential protein that plays multiple roles in several biological processes of N. caninum. NcGRX5 interacts with the mitochondrial iron-sulfur cluster synthesis proteins ISCS and ISCU1 and also regulates parasite energy metabolism. These data provide an insider's view of the metabolic regulation and iron-sulfur cluster assembly processes in the apicomplexan parasites.
Asunto(s)
Proteínas Hierro-Azufre , Neospora , Parásitos , Animales , Ratones , Parásitos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Neospora/metabolismo , Mitocondrias/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metabolismo Energético , Hierro/metabolismo , Azufre/metabolismoRESUMEN
Neospora caninum is an important obligate intracellular apicomplexan parasite that causes spontaneous abortions in cattle and leads to huge economic losses to the farming industry. Although a high prevalence of N. caninum infection has been reported in Asia, data on the prevalence of water buffaloes in China remain unclear. To understand the seroprevalence of N. caninum infection in water buffaloes and its definitive host dogs in China, a total of 987 water buffalo sera from Guangxi Province were tested using an indirect enzyme-linked immunosorbent assay. We obtained an overall seroprevalence of 50.9% (502/987) for water buffalo samples. And the positive rate was higher in border cities (56.8%, 425/748) than in central cities (32.3%, 77/239). We further tested 240 serum samples from dogs in Guangxi and found an overall prevalence of 57.9% (139/240). The high prevalence of N. caninum infection in both dogs and water buffaloes was first reported in southern China, and these data will surely contribute to the prevention and control of the disease.
Asunto(s)
Enfermedades de los Bovinos , Coccidiosis , Enfermedades de los Perros , Neospora , Femenino , Embarazo , Bovinos , Animales , Perros , Búfalos , China/epidemiología , Estudios Seroepidemiológicos , Coccidiosis/epidemiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Anticuerpos Antiprotozoarios , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Bovinos/epidemiologíaRESUMEN
Maternally derived IgG antibodies to protective Eimeria antigens have great potential to control chicken coccidiosis and multivalent vaccines are more practical to resist against co-infection with several species of Eimeria under natural conditions. In this study, five good protective antigens of Eimeria species were combined into two combinations based on previous studies, namely C1(EtROPK-Eten5-A, EtGAM22, Ea3-1E and EmGAM56) and C2(EtM2AP and EtGAM22, Ea3-1E and EmGAM56). Then, five antigens were expressed in the Escherichia coli system and purified to inoculate breeding hens. After three times immunization, the specific antibodies could sustain for 11 and 10 weeks in hens' plasma and egg yolk, respectively. Moreover, maternally derived antibodies against recombinant proteins could retain for 14 days in hatchlings' serum. Then, protective efficacies of specific antibodies on hatchlings against mixed infection of E. tenella, E. acervulina and E. maxima were evaluated. The results showed that the hatchlings of the immunized hens had a higher survival rate on day 7 of hatching. Moreover, body weight gains within the hatchlings of immunized hens were higher than those of unvaccinated hens on 7 days (C1: p = 0.0744; C2: p = 0.4020) and 14 days (p < 0.0001). Moreover, hatchlings from vaccinated hens showed significantly alleviated lesion scores in the small intestine and duodenum at day 7 (p < 0.01) and day 14 (C1: p < 0.05). Particularly, the number of oocyst excretion from hatchlings of immunized hens was significantly reduced at day 7 (p < 0.0001) and day 14 (p < 0.0001). Our findings suggest that the maternal immunization with multivalent recombinant vaccines has the potential to be transmission blocking vaccines against mixed infection of Eimeria.
Asunto(s)
Coccidiosis , Coinfección , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Femenino , Pollos , Coinfección/veterinaria , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Vacunas Sintéticas , Enfermedades de las Aves de Corral/prevención & control , Proteínas Recombinantes , Antígenos de ProtozoosRESUMEN
Toxoplasma gondii is a widespread intracellular pathogen that infects humans and a variety of animals. The current therapeutic strategy for human toxoplasmosis is a combination of sulphadiazine and pyrimethamine. However, this combination still has a high failure rate and is ineffective against chronic infections. Therefore, it is important to discover a new anti-T. gondii drug that is safer and more effective in both humans and animals. In this study, we describe the anti-T. gondii activities of the 16-membered macrolide tilmicosin and acetylisovaleryltylosin tartrate (ATLL). Both tilmicosin and ATLL potently inhibited T. gondii with a half-maximal effective concentration (EC50) of 17.96 µM and 10.67 µM, respectively. Interestingly, tilmicosin and ATLL had different effects on the parasites. ATLL exhibited a potent inhibitory effect on intracellular parasite growth, while tilmicosin suppressed parasites extracellularly. By studying the lytic cycle of T. gondii after treatment, we found that ATLL potently inhibited the intracellular proliferation of tachyzoites, while tilmicosin affected the invasion of tachyzoites. Immunofluorescence analysis using ATLL-treated T. gondii showed morphologically abnormal parasites, which may be due to the inhibition of tachyzoite proliferation and division. In addition, tilmicosin and ATLL significantly delayed the death of mice caused by acute toxoplasmosis. Our results suggest that ATLL has potent anti-Toxoplasma activity both in vitro and in vivo and may be an alternative to toxoplasmosis in the future.
Asunto(s)
Leucemia-Linfoma de Células T del Adulto , Toxoplasma , Toxoplasmosis , Animales , Humanos , Ratones , Tartratos/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Tilosina/análogos & derivadosRESUMEN
Toxoplasma gondii is an obligate intracellular protozoan that infects the nucleated cells of warm-blooded animals and causes life-threatening disease in immunocompromised patients. Due to the limited effectiveness and prominent side effects of existing drugs, there is an urgent need to develop new therapeutic options against T. gondii. Piceatannol is a natural plant compound with multiple functions such as antibacterial, antileukemic and antiparasitic activities. In the present study, the anti-T. gondii activity of piceatannol was evaluated. Piceatannol potently inhibited Toxoplasma with a half-maximal effective concentration (EC50) of 28.10 µM. Piceatannol showed a significant inhibitory effect on intracellular proliferation, inhibiting intracellular parasites at a rate of 98.9% when treatment with 100 µM piceatannol. However, the invasion ability of tachyzoites was not affected by piceatannol. By immunofluorescence assay, we noted that the parasite showed abnormalities in cell division after exposure to piceatannol. To determine the in vivo effect of piceatannol on acute infection, a model was established by infecting BALB/c mice with the virulent RH strain of T. gondii. Mice infected with 500 tachyzoites showed a significant therapeutic effect when treated with 15 mg/kg of piceatannol. These results suggest that piceatannol is a promising drug for the treatment of T. gondii.
RESUMEN
CRISPR/Cas9 technology has been widely used for gene editing in organisms. Gene deletion of the ku80/ku70 complex can improve the efficiency of gene replacement in Arabidopsis thaliana, Cryptococcus neoformans, and Toxoplasma gondii, which remained elusive in Neospora caninum. Here, we knock out the ku80 gene in Nc1 strain by using CRISPR/Cas9, detect the growth rate and virulence of NcΔku80. Then we compare the efficiency of gene replacements between NcΔku80 and Nc1 strains by transfected with the same HA-tagged plasmids, and the percentage of HA-tagged parasites was investigated by IFA. The results showed that gene targeting efficiency was increased in the NcΔku80 strain via double crossover at several genetic loci, but its growth rate and virulence were unaffected. In conclusion, the NcΔku80 strain can be used as an effective strain for rapid gene editing of N. caninum.
Asunto(s)
Coccidiosis , Neospora , Toxoplasma , Anticuerpos Antiprotozoarios , Coccidiosis/parasitología , Edición Génica/métodos , Humanos , Neospora/genética , Plásmidos/genética , Toxoplasma/genética , Virulencia/genéticaRESUMEN
Toxoplasma gondii is a widespread intracellular pathogen that infects humans and a variety of animals. Dihydroartemisinin (DHA), an effective anti-malarial drug, has potential anti-T. gondii activity that induces ferroptosis in tumor cells, but the mechanism by which it kills T. gondii is not fully understood. In this study, the mechanism of DHA inhibiting T. gondii growth and its possible drug combinations are described. DHA potently inhibited T. gondii with a half-maximal effective concentration (EC50) of 0.22 µM. DHA significantly increased the ROS level of parasites and decreased the mitochondrial membrane potential, which could be reversed by ferroptosis inhibitors (DFO). Moreover, the ferroptosis inducer RSL3 inhibited T. gondii with an EC50 of 0.75 µM. In addition, RSL3 enhanced the DHA-induced ROS level, and the combination of DHA and RSL3 significantly increased the anti-Toxoplasma effect as compared to DHA alone. In summary, we found that DHA-induced ROS accumulation in tachyzoites may be an important cause of T. gondii growth inhibition. Furthermore, we found that the combination of DHA and RSL3 may be an alternative to toxoplasmosis. These results will provide a new strategy for anti-Toxoplasma drug screening and clinical medication guidance.
Asunto(s)
Artemisininas , Ferroptosis , Toxoplasma , Toxoplasmosis , Humanos , Animales , Especies Reactivas de Oxígeno/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Artemisininas/farmacología , Artemisininas/uso terapéuticoRESUMEN
Glutaredoxins (GRXs), important components of the intracellular thiol redox system, are involved in multiple cellular processes. In a previous study, we identified five GRXs in the apicomplexan parasite, Neospora caninum. In the present study, we confirmed that the GRXs S14 and C5 are located in the apicoplast, which suggests unique functions for these proteins. Although single-gene deficiency did not affect the growth of parasites, a double knockout (Δgrx S14Δgrx C5) significantly reduced their reproductive capacity. However, there were no significant changes in redox indices (GSH/GSSG ratio, reactive oxygen species and hydroxyl radical levels) in double-knockout parasites, indicating that grx S14 and grx C5 are not essential for maintaining the redox balance in parasite cells. Key amino acid mutations confirmed that the Cys203 of grx S14 and Cys253/256 of grx C5 are important for parasite growth. Based on comparative proteomics, 79 proteins were significantly downregulated in double-knockout parasites, including proteins mainly involved in the electron transport chain, the tricarboxylic acid cycle and protein translation. Collectively, GRX S14 and GRX C5 coordinate the growth of parasites. However, considering their special localization, the unique functions of GRX S14 and GRX C5 need to be further studied.
Asunto(s)
Apicoplastos/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Neospora/metabolismo , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutarredoxinas/genética , Neospora/genética , Neospora/crecimiento & desarrollo , Oxidación-Reducción , Proteínas Protozoarias/genéticaRESUMEN
Coccidiosis, caused by parasites of the genus Eimeria, is one of the most widespread and economically detrimental diseases in the global poultry industry. Because the merozoite stage of Eimeria tenella is immunologically vulnerable, motile, and functionally important for the parasites, the proteins expressed in these stages are considered to be potentially immunoprotective antigens, especially the secreted antigens and surface antigens. Here, we detected a previously unidentified MIC2-associated protein (Et-M2AP) from E. tenella and determined its localization. An immunofluorescence assay revealed that Et-M2AP was distributed in the apical part of second generation merozoites and sporozoites. In addition, an expression profile analysis revealed that the transcriptional level of Et-M2AP is significantly higher in the merozoite stage. To assess the potential of Et-M2AP protein as a coccidiosis vaccine, we expressed recombinant Et-M2AP (rEt-M2AP) and compared the immune protective efficacy of rEt-M2AP with 3 surface antigens that are highly expressed by merozoites (rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins). The immune protective efficacy of these vaccine candidates was assessed based on survival rate, lesion score, BW gain, relative BW gain, and oocyst output. The results show that the survival rate was 90%, which are significantly higher than those in the challenge control group. The BW gain rate was 42% (P < 0.001) in rEt-M2AP-immunized chickens, which are significantly higher than those in the challenge control group and rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins-immunized chickens. In addition, chickens immunized with rEt-M2AP (88% oocyst output decrease rate, P < 0.001) had the least oocyst output, compared with those immunized with rEt-SAG16 (59.2% oocyst output decrease rate, P < 0.001), rEt-SAG23 (22% oocyst output decrease rate), and rEt-SAG2 (1.36% oocyst output decrease rate). These results demonstrate that rEt-M2AP provided effective protection against challenge with E. tenella, suggesting that rEt-M2AP is a promising candidate antigen gene for development as a coccidiosis vaccine.
Asunto(s)
Coccidiosis , Eimeria tenella , Merozoítos , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Pollos/inmunología , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Eimeria tenella/genética , Eimeria tenella/inmunología , Merozoítos/genética , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Antiprotozoos/inmunología , Vacunas Antiprotozoos/normas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunologíaRESUMEN
The intracellular parasite Neospora caninum can parasitize all nucleated cells of the host. Dense granule proteins (GRAs) secreted by dense granules are an important material involved in the formation of parasitophorous vacuoles (PVs), which facilitate parasite survival and replication in host cells. Due to the secretory and immune properties of NcGRA7, it is considered to be a promising serodiagnosis marker and an effective neosporosis vaccine candidate. However, the intracellular regulatory mechanisms involved in NcGRA7-induced host responses have rarely been examined. Here, we used the CRISPR/Cas9 genome editing system to obtain a NcGRA7 knockout strain (ΔNcGRA7) and a NcGRA7 complementary strain (iΔNcGRA7) to study their function. We found that ΔNcGRA7 exhibited slower growth in vitro and weakened virulence in mice compared with Nc1 and iΔNcGRA7. All parasite strains can stimulate host immune cells to produce IFN-γ, and the amount of IFN-γ production stimulated by Nc1 was significantly higher than that stimulated by ΔNcGRA7. The transcription levels of the cellular immune factors GBP1, GBP2, IRGa6, and IRGb6 were significantly higher after stimulation with ΔNcGRA7 parasites than after stimulation with Nc1. Furthermore, ΔNcGRA7 infection resulted in greater IRGa6 recruitment to the PVM than Nc1 infection. ΔNcGRA7 parasites were more easily cleared by macrophages than Nc1 parasites. Collectively, these results showed that NcGRA7 plays an important role in regulating the immune factors of mice and the aggregation of IRGa6 at the PVM, which affects the pathogenicity of N. caninum.
Asunto(s)
Coccidiosis/inmunología , Inmunidad Innata , Neospora/patogenicidad , Proteínas Protozoarias/inmunología , Animales , Coccidiosis/parasitología , Interacciones Huésped-Parásitos/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Ratones , Neospora/genética , Neospora/inmunología , Proteínas Protozoarias/genética , Virulencia/genéticaRESUMEN
Toxoplasma gondii rapidly propagates through endodyogeny of tachyzoites, a process in which daughter parasites divide within the cell of the mother parasite. Recent studies have revealed that transcription factors with AP2-domain participate in the process of cell division in T. gondii. However, the concise regulation of the division cycles by AP2 proteins is poorly understood. In this study, we evaluated the effect of the transcription factor TgAP2IX-5 on the daughter cell formation in T. gondii. TgAP2IX-5 is a nuclear protein and is highly expressed during the S phase of the cell cycle of tachyzoites. TgAP2IX-5-disrupted strain showed a severe defect in replication and completely blocked lytic parasite growth. Following 3-indoleacetic acid treatment or without treatment of AP2IX-5-AID-3HA tagged strain for 30 min, 1 and 2 hr, the differentially expressed genes were 8, 54 and 202, respectively. Among these genes, the significantly downregulated ones were AP2 proteins, inner membrane complex (IMC) proteins and SAG-related proteins. Interestingly, loss of TgAP2IX-5 leads to a defect in internal daughter IMC formation and abnormalities in the morphology of organelles during cell division. Together, our study suggests that TgAP2IX-5 is crucial in regulating IMC formation of daughter cells in T. gondii.