Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 6: 19779, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26891989

RESUMEN

Animals have developed the ability to sense the water content in their habitats, including hygrosensation (sensing humidity in the air) and hydrosensation (sensing the water content in other microenvironments), and they display preferences for specific water contents that influence their mating, reproduction and geographic distribution. We developed and employed four quantitative behavioural test paradigms to investigate the molecular and cellular mechanisms underlying sensing the water content in an agar substrate (hydrosensation) and hydrotaxis in Caenorhabditis elegans. By combining a reverse genetic screen with genetic manipulation, optogenetic neuronal manipulation and in vivo Ca(2+) imaging, we demonstrate that adult worms avoid the wetter areas of agar plates and hypo-osmotic water droplets. We found that the cGMP signalling pathway in ciliated sensory neurons is involved in hydrosensation and hydrotaxis in Caenorhabditis elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , GMP Cíclico/metabolismo , Sensación , Transducción de Señal , Agua , Animales , Conducta Animal , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/fisiología
2.
Nat Commun ; 6: 5655, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25585042

RESUMEN

Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.


Asunto(s)
Reacción de Prevención , Caenorhabditis elegans/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Nocicepción/fisiología , Transducción de Señal/fisiología , Animales , Conducta Animal , Fenómenos Biomecánicos , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Cobre/química , Sulfato de Cobre/química , Genotipo , Microscopía Confocal , Mutación , Neuropéptidos/química , Nociceptores/metabolismo , Octopamina/química , Células Receptoras Sensoriales/fisiología , Serotonina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA