Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chem ; 10(5): 1528-1540, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38803519

RESUMEN

Hydrogen (H2) has powered microbial metabolism for roughly 4 billion years. The recent discovery that it also fuels geochemical analogs of the most ancient biological carbon fixation pathway sheds light on the origin of metabolism. However, it remains unclear whether H2 can sustain more complex nonenzymatic reaction networks. Here, we show that H2 drives the nonenzymatic reductive amination of six biological ketoacids and glyoxylate to give the corresponding amino acids in good yields using ammonium concentrations ranging from 6 to 150 mM. Catalytic amounts of nickel or ground meteorites enable these reactions at 22°C and pH 8. The same conditions promote an H2-dependent ketoacid-forming reductive aldol chemistry that co-occurs with reductive amination, producing a continuous reaction network resembling amino acid synthesis in the metabolic core of ancient microbes. The results support the hypothesis that the earliest biochemical networks could have emerged without enzymes or RNA.

2.
Angew Chem Int Ed Engl ; 63(8): e202316110, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38127486

RESUMEN

Hydrothermal vents harbor numerous microbial communities rich in reduced carbon species such as formate, acetate, and hydrocarbons. Such essential chemicals for life are produced by H2 -dependent CO2 reduction, where serpentinization provides continuous H2 and thermal energy. Here, we show that silica-supported bimetallic Co-Fe alloys, naturally occurring minerals around serpentinite, can convert CO2 and H2 O to key metabolic intermediates of the acetyl coenzyme A pathway such as formate (up to 72 mM), acetate, and pyruvate under mild hydrothermal vent conditions. Long-chain hydrocarbons up to C6 including propene are also detected, just as in the Lost City hydrothermal field. The effects of promoters on structural properties and catalytic functionalities of the Co-Fe alloy are systematically investigated by incorporating a series of alkali and alkaline earth metals including Na, Mg, K, and Ca. Alkali and alkaline earth metals resulted in higher formate concentrations when dissolved in water and increased reaction pH, while alkaline earth metals also favored the formation of insoluble hydroxides and carbonates similar to the constituent minerals of the chimneys at the Lost City hydrothermal fields.

3.
Angew Chem Int Ed Engl ; 62(22): e202218189, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36951652

RESUMEN

Abiotic synthesis of formate and short hydrocarbons takes place in serpentinizing vents where some members of vent microbial communities live on abiotic formate as their main carbon source. To better understand the catalytic properties of Ni-Fe minerals that naturally exist in hydrothermal vents, we have investigated the ability of synthetic Ni-Fe based nanoparticular solids to catalyze the H2 -dependent reduction of CO2 , the first step required for the beginning of pre-biotic chemistry. Mono and bimetallic Ni-Fe nanoparticles with varied Ni-to-Fe ratios transform CO2 and H2 into intermediates and products of the acetyl-coenzyme A pathway-formate, acetate, and pyruvate-in mM range under mild hydrothermal conditions. Furthermore, Ni-Fe catalysts converted CO2 to similar products without molecular H2 by using water as a hydrogen source. Both CO2 chemisorption analysis and post-reaction characterization of materials indicate that Ni and Fe metals play complementary roles for CO2 fixation.

4.
ACS Appl Mater Interfaces ; 13(24): 28639-28649, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34100583

RESUMEN

Self-assembly of block copolymers (BCPs) is an alternative patterning technique that promises high resolution and density multiplication with lower costs. The defectivity of the resulting nanopatterns remains too high for many applications in microelectronics and is exacerbated by small variations of processing parameters, such as film thickness, and fluctuations of solvent vapor pressure and temperature, among others. In this work, a solvent vapor annealing (SVA) flow-controlled system is combined with design of experiments (DOE) and machine learning (ML) approaches. The SVA flow-controlled system enables precise optimization of the conditions of self-assembly of the high Flory-Huggins interaction parameter (χ) hexagonal dot-array forming BCP, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS). The defects within the resulting patterns at various length scales are then characterized and quantified. The results show that the defectivity of the resulting nanopatterned surfaces is highly dependent upon very small variations of the initial film thicknesses of the BCP, as well as the degree of swelling under the SVA conditions. These parameters also significantly contribute to the quality of the resulting pattern with respect to grain coarsening, as well as the formation of different macroscale phases (single and double layers and wetting layers). The results of qualitative and quantitative defect analyses are then compiled into a single figure of merit (FOM) and are mapped across the experimental parameter space using ML approaches, which enable the identification of the narrow region of optimum conditions for SVA for a given BCP. The result of these analyses is a faster and less resource intensive route toward the production of low-defectivity BCP dot arrays via rational determination of the ideal combination of processing factors. The DOE and machine learning-enabled approach is generalizable to the scale-up of self-assembly-based nanopatterning for applications in electronic microfabrication.

5.
Science ; 368(6492)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409446

RESUMEN

Hu and Ruckenstein state that our findings were overclaimed and not new, despite our presentation of evidence for the Nanocatalysts on Single Crystal Edges (NOSCE) mechanism. Their arguments do not take into account fundamental differences between our Ni-Mo/MgO catalyst and their NiO/MgO preparations.

6.
Science ; 367(6479): 777-781, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32054760

RESUMEN

Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the "Nanocatalysts On Single Crystal Edges" technique could lead to stable catalyst designs for many challenging reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA