Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Annu Rev Biophys ; 42: 143-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451895

RESUMEN

Volatile anesthetics serve as useful probes of a conserved biological process that is essential to the proper functioning of the central nervous system. A kinetic and thermodynamic analysis of their unusual pharmacological and physiological characteristics has led to a general, predictive theory in which small molecules that adsorb to membranes modulate ion channel function by altering physical properties of membrane bilayers. A kinetic model that is both parsimonious and falsifiable has been developed to test this mechanism. This theory leads to predictions about the structure, function, origin, and evolution of synapses, the etiology of several diseases and disease symptoms affecting the brain, and the mechanism of action of several drugs that are used therapeutically. Neuronal membranes may offer an appealing drug target, given the large number of compounds that adsorb to interfaces and hence membranes.


Asunto(s)
Anestésicos/administración & dosificación , Evolución Biológica , Sistema Nervioso Central/efectos de los fármacos , Anestésicos/farmacocinética , Animales , Sistema Nervioso Central/metabolismo , Humanos , Canales Iónicos/metabolismo , Cinética , Termodinámica
2.
Langmuir ; 29(6): 1948-55, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23339286

RESUMEN

3-Hydroxybutyric acid (also referred to as ß-hydroxybutyric acid or BHB), a small molecule metabolite whose concentration is elevated in type I diabetes and diabetic coma, was found to modulate the properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers when added to the subphase at clinical concentrations. This is a key piece of evidence supporting the hypothesis that the anesthetic actions of BHB are due to the metabolite's abilities to alter physical properties of cell membranes, leading to indirect effects on membrane protein function. Pressure-area isotherms show that BHB changes the compressibility of the monolayer and decrease the size of the two-phase coexistence region. Epi-fluorescent microscopy further reveals that the reduction of the coexistence region is due to the significant reduction in morphology of the liquid condensed domains in the two-phase coexistence region. These changes in monolayer morphology are associated with the diminished interfacial viscosity of the monolayers (measured using an interfacial stress rheometer), which gives insight as to how changes in phase and structure may contribute to membrane function.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Anestésicos/metabolismo , Anestésicos/farmacología , Estado de Conciencia/efectos de los fármacos , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Relación Dosis-Respuesta a Droga
3.
Anesth Analg ; 113(3): 500-4, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21813630

RESUMEN

BACKGROUND: ß3 containing γ-aminobutyric acid type A receptors (GABA(A)-Rs) mediate behavioral end points of IV anesthetics such as immobility and hypnosis. A knockout mouse with targeted forebrain deletion of the ß3 subunit of the GABA(A)-R shows reduced sensitivity to the hypnotic effect of etomidate, as measured by the loss of righting reflex. The end points of amnesia and immobility produced by an inhaled anesthetic have yet to be evaluated in this conditional knockout. METHODS: We assessed forebrain selective ß3 conditional knockout mice and their littermate controls for conditional fear to evaluate amnesia and MAC, the minimum alveolar concentration of inhaled anesthetic necessary to produce immobility in response to noxious stimulation, to assess immobility. Suppression of conditional fear was assessed for etomidate and isoflurane, and MAC was assessed for isoflurane. RESULTS: Etomidate equally suppressed conditional fear for both genotypes. The knockout showed resistance to the suppression of conditional fear produced by isoflurane in comparison with control littermates. Controls and knockouts did not differ in isoflurane MAC values. CONCLUSIONS: These results suggest that ß3 containing GABA(A)-Rs in the forebrain contribute to hippocampal-dependent memory suppressed by isoflurane, but not etomidate.


Asunto(s)
Amnesia/prevención & control , Anestésicos por Inhalación/toxicidad , Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Isoflurano/toxicidad , Prosencéfalo/efectos de los fármacos , Receptores de GABA-A/deficiencia , Amnesia/inducido químicamente , Amnesia/genética , Amnesia/metabolismo , Amnesia/psicología , Análisis de Varianza , Anestésicos Intravenosos/toxicidad , Animales , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Etomidato/toxicidad , Miedo/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Dinámicas no Lineales , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Prosencéfalo/metabolismo , Receptores de GABA-A/genética
4.
Proc Natl Acad Sci U S A ; 108(29): 12143-8, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730130

RESUMEN

Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.


Asunto(s)
Proteínas Bacterianas/metabolismo , Canales Iónicos Activados por Ligandos/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína/fisiología , Receptores de Glicina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Alcoholes , Secuencia de Aminoácidos , Anestésicos Generales , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Línea Celular , Clonación Molecular , Cricetinae , ADN Complementario/genética , Electrofisiología , Ivermectina , Canales Iónicos Activados por Ligandos/genética , Datos de Secuencia Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Propofol , Estructura Terciaria de Proteína/genética , Receptores de Glicina/genética , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de ADN , Xenopus
5.
Nature ; 469(7330): 428-31, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21248852

RESUMEN

General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.


Asunto(s)
Anestésicos Generales/química , Anestésicos Generales/metabolismo , Cianobacterias/química , Isoflurano/análogos & derivados , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Propofol/química , Sitios de Unión/genética , Cristalografía por Rayos X , Desflurano , Fenómenos Electrofisiológicos , Isoflurano/química , Isoflurano/metabolismo , Canales Iónicos Activados por Ligandos/genética , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Propofol/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Protones
6.
PLoS Genet ; 6(8)2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20714347

RESUMEN

The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.


Asunto(s)
Peso Corporal , Etanol/metabolismo , Ratones/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Proteínas de la Membrana , Ratones/genética , Ratones/crecimiento & desarrollo , Ratones/fisiología , Ratones Endogámicos C57BL , Actividad Motora
7.
Anesth Analg ; 110(1): 59-63, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19933531

RESUMEN

A prokaryotic member of the gamma-aminobutyric acid type A receptor superfamily (GLIC) was recently cloned from the cyanobacterium Gloeobacter violaceus, its function characterized, and its 3-dimensional x-ray diffraction crystal structure determined. We report its modulation by 9 anesthetics using 2-electrode voltage clamping in Xenopus laevis oocytes. Desflurane, halothane, isoflurane, sevoflurane, and propofol inhibited currents through GLIC at and below concentrations used clinically. Hill numbers averaged 0.3, indicating negative cooperativity or multiple sites or mechanisms of action. A 2-site model fit the data for desflurane and halothane better than a 1-site model. Xenon and etomidate modulated GLIC at or above clinical concentrations, with no cooperativity. Ethanol and nitrous oxide did not modulate GLIC at surgical anesthetic concentrations. These investigations lay the groundwork for further structural and functional studies of anesthetic actions on GLIC.


Asunto(s)
Anestésicos/farmacología , Cianobacterias/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Algoritmos , Anestésicos por Inhalación/farmacología , Animales , Depresores del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Etanol/farmacología , Femenino , Oocitos/metabolismo , Técnicas de Placa-Clamp , Protones , Receptores de GABA-A/efectos de los fármacos , Receptores Nicotínicos/efectos de los fármacos , Xenopus laevis
8.
Anesth Analg ; 109(6): 1816-22, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19923508

RESUMEN

BACKGROUND: General anesthesia produces multiple end points including immobility, hypnosis, sedation, and amnesia. Tonic inhibition via gamma-aminobutyric acid type A receptors (GABA(A)-Rs) may play a role in mediating behavioral end points that are suppressed by low concentrations of anesthetics (e.g., hypnosis and amnesia). GABA(A)-Rs containing the alpha4 subunit are highly concentrated in the hippocampus and thalamus, and when combined with delta subunits they mediate tonic inhibition, which is sensitive to low concentrations of isoflurane. METHODS: In this study, we used a GABA(A) alpha4 receptor knockout mouse line to evaluate the contribution of alpha4-containing GABA(A)-Rs to the effects of immobility, hypnosis, and amnesia produced by isoflurane. Knockout mice and their wild-type counterparts were assessed on 3 behavioral tests: conditional fear (to assess amnesia), loss of righting reflex (to assess hypnosis), and the minimum alveolar concentration of inhaled anesthetic necessary to produce immobility in response to noxious stimulation in 50% of subjects (to assess immobility). RESULTS: Genetic inactivation of the alpha4 subunit reduced the amnestic effect of isoflurane, minimally affected loss of righting reflex, and had no effect on immobility. CONCLUSIONS: These results lend support to the hypothesis that different sites of action mediate different anesthetic end points and suggest that alpha4-containing GABA(A)-Rs are important mediators of the amnestic effect of isoflurane on hippocampal-dependent declarative memory.


Asunto(s)
Amnesia/prevención & control , Anestésicos por Inhalación/toxicidad , Conducta Animal/efectos de los fármacos , Resistencia a Medicamentos , Hipocampo/efectos de los fármacos , Isoflurano/toxicidad , Memoria/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Amnesia/inducido químicamente , Amnesia/genética , Amnesia/fisiopatología , Amnesia/psicología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/genética , Miedo/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Reflejo/efectos de los fármacos
9.
Anesth Analg ; 108(5): 1538-45, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19372333

RESUMEN

INTRODUCTION: Elevated concentrations of isovaleric (IVA), methylmalonic (MMA), and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and gamma-aminobutyric acid (GABA(A)) receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids. METHODS: Anesthetic EC(50)s were measured in Xenopus laevis tadpoles. Glycine and GABA(A) receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids. RESULTS: IVA acid was an anesthetic in tadpoles, whereas MMA and propionic acid decreased isoflurane's EC(50) by half. All three organic acids concentration-dependently increased current through alpha(1) glycine receptors. There were minimal effects on alpha(1)beta(2)gamma(2s) GABA(A) receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers. CONCLUSION: IVA, MMA, and propionic acid have anesthetic effects in tadpoles, positively modulate glycine receptor function and affect physical properties of DPPC monolayers.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Anestésicos por Inhalación/farmacología , Membrana Celular/efectos de los fármacos , Isoflurano/farmacología , Ácido Metilmalónico/farmacología , Ácidos Pentanoicos/farmacología , Propionatos/farmacología , Receptores de Glicina/efectos de los fármacos , Animales , Membrana Celular/metabolismo , Cloruros/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Hemiterpenos , Larva/efectos de los fármacos , Larva/metabolismo , Potenciales de la Membrana , Mutación , Presión , Receptores de GABA-A/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Propiedades de Superficie , Xenopus laevis
10.
Anesth Analg ; 108(1): 176-80, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19095846

RESUMEN

INTRODUCTION: Tolerance is observed for a variety of central nervous system depressants including ethanol, which is an anesthetic, but has not been convincingly demonstrated for a potent halogenated volatile anesthetic. Failure to demonstrate tolerance to these agents may be the result of inadequate exposure to anesthetic. In this study, we exposed Xenopus laevis tadpoles to surgical anesthetic concentrations of isoflurane for 1 wk. METHODS: Xenopus laevis tadpoles were produced by in vitro fertilization, and exposed to isoflurane (0.59%, 0.98%, 1.52%) or oxygen for 1 wk starting from the time of fertilization. RESULTS: Changes in anesthetic EC(50) were small and not in a consistent direction. Control animals had an anesthetic EC(50) of 0.594% +/- 0.003% isoflurane. Tadpoles exposed to 1.52% isoflurane had a lower EC(50) than controls (by 16%), whereas tadpoles raised under 0.59% and 0.98% isoflurane had higher EC(50)s than control (by 4.7% and 7.4%, respectively). CONCLUSION: We provide the first description of week-long exposures of vertebrates to surgical anesthetic concentrations of isoflurane, and the first report of such exposures in developing vertebrates. Tolerance to isoflurane does not occur in developing Xenopus laevis tadpoles. Taken together with studies in other organisms, the development of tolerance to ethanol but not isoflurane suggests that mechanisms shared by these drugs probably do not account for the development of tolerance.


Asunto(s)
Anestésicos por Inhalación/farmacología , Tolerancia a Medicamentos , Isoflurano/farmacología , Movimiento/efectos de los fármacos , Xenopus laevis/crecimiento & desarrollo , Animales , Relación Dosis-Respuesta a Droga , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Factores de Tiempo
11.
Anesth Analg ; 107(3): 849-54, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18713893

RESUMEN

In this article, I present an evolutionary explanation for why organisms respond to inhaled anesthetics. It is conjectured that organisms today respond to inhaled anesthetics owing to the sensitivity of ion channels to inhaled anesthetics, which in turn has arisen by common descent from ancestral, anesthetic-sensitive ion channels in one-celled organisms (i.e., that the response to anesthetics did not arise as an adaptation of the nervous system, but rather of ion channels that preceded the origin of multicellularity). This sensitivity may have been refined by continuing selection at synapses in multicellular organisms. In particular, it is hypothesized that 1) the beneficial trait that was selected for in one-celled organisms was the coordinated response of ion channels to compounds that were present in the environment, which influenced the conformational equilibrium of ion channels; 2) this coordinated response prevented the deleterious consequences of entry of positive charges into the cell, thereby increasing the fitness of the organism; and 3) these compounds (which may have included organic anions, cations, and zwitterions as well as uncharged compounds) mimicked inhaled anesthetics in that they were interfacially active, and modulated ion channel function by altering bilayer properties coupled to channel function. The proposed hypothesis is consistent with known properties of inhaled anesthetics. In addition, it leads to testable experimental predictions of nonvolatile compounds having anesthetic-like modulatory effects on ion channels and in animals, including endogenous compounds that may modulate ion channel function in health and disease. The latter included metabolites that are increased in some types of end-stage organ failure, and genetic metabolic diseases. Several of these predictions have been tested and proved to be correct.


Asunto(s)
Anestésicos por Inhalación/uso terapéutico , Activación del Canal Iónico , Anestesiología/métodos , Animales , Evolución Biológica , Humanos , Canales Iónicos/metabolismo , Modelos Biológicos , Modelos Teóricos , Saccharomyces cerevisiae/efectos de los fármacos
12.
Anesth Analg ; 107(3): 832-48, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18713892

RESUMEN

A paradox arises from present information concerning the mechanism(s) by which inhaled anesthetics produce immobility in the face of noxious stimulation. Several findings, such as additivity, suggest a common site at which inhaled anesthetics act to produce immobility. However, two decades of focused investigation have not identified a ligand- or voltage-gated channel that alone is sufficient to mediate immobility. Indeed, most putative targets provide minimal or no mediation. For example, opioid, 5-HT3, gamma-aminobutyric acid type A and glutamate receptors, and potassium and calcium channels appear to be irrelevant or play only minor roles. Furthermore, no combination of actions on ligand- or voltage-gated channels seems sufficient. A few plausible targets (e.g., sodium channels) merit further study, but there remains the possibility that immobilization results from a nonspecific mechanism.


Asunto(s)
Analgesia , Anestésicos por Inhalación/uso terapéutico , Inmovilización , Animales , Humanos , Ligandos , Ratones , Modelos Biológicos , Modelos Genéticos , Modelos Teóricos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/uso terapéutico , Receptores de Serotonina 5-HT3/metabolismo , Canales de Sodio/metabolismo , Electricidad Estática
13.
Anesth Analg ; 107(3): 868-74, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18713898

RESUMEN

INTRODUCTION: Inhaled anesthetics are interfacially active, concentrating at interfaces such as the protein/water or bilayer/water interfaces. We tested the hypothesis that interfacial activity was a sufficient condition for anesthetic-like modulation of receptor function by applying surfactants to gamma-aminobutyric acid type A (GABA(A)), glycine, and N-methyl-d-aspartate (NMDA) receptors. We defined anesthetic-like modulation as an increase in currents through native channels that isoflurane and ethanol increased currents through, and a decrease in currents through channels that isoflurane and ethanol decreased currents through. We also tested the null hypothesis that there would be no difference in modulation of channel currents by surfactants in receptors with point mutations that diminished their response to isoflurane and ethanol compared to the native version of these receptors. METHODS: The effect of seven surfactants with different head group charges (anionic, cationic, zwitterionic, and uncharged) and tail lengths (8 carbons and 12 carbons) on homomeric wild type alpha1 and mutant alpha(1) (S267I) glycine receptors, wild type alpha(1)beta(2)gamma(2s) and mutant alpha(1)(S270I)beta(2)gamma(2s) GABA(A) receptors, and wild type NR1/NR2A and mutant NR1(F639A)/NR2A NMDA receptors was studied. Receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. RESULTS: All seven surfactants, isoflurane, and ethanol enhanced GABA(A) receptor function. Six of seven surfactants, isoflurane, and ethanol enhanced glycine receptor function. Six of seven surfactants, isoflurane, and ethanol inhibited NMDA receptor function. For the mutant receptors, five of seven surfactants increased currents through GABA(A) receptors, whereas six of seven surfactants increased currents through glycine receptors. Six of seven surfactants decreased currents through the NMDA receptor. In contrast to isoflurane and ethanol, surfactants as a group did not diminish modulation of mutant compared to wild type receptors. CONCLUSION: These findings identify another large class of compounds (surfactants) that modulate the function of GABA(A), glycine, and NMDA receptors in a manner that is qualitatively similar to inhaled anesthetics. We cannot reject the hypothesis that interfacial activity is a sufficient condition for anesthetic-like modulation of these receptors. Mutations that diminish the modulatory effect of isoflurane and ethanol did not diminish the modulatory effect of the surfactants.


Asunto(s)
Anestesia/métodos , Anestésicos/farmacología , Tensoactivos/farmacología , Animales , Etanol/química , Isoflurano/química , Membrana Dobles de Lípidos/química , Oocitos/metabolismo , Técnicas de Placa-Clamp , Receptores de GABA/metabolismo , Receptores de GABA-A/química , Receptores de Glicina/química , Receptores de N-Metil-D-Aspartato/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Agua/química , Xenopus laevis
14.
Anesth Analg ; 107(2): 479-85, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18633026

RESUMEN

BACKGROUND: We hypothesized that pairs of inhaled anesthetics having divergent potencies [one acting weakly at minimum alveolar anesthetic concentration (MAC); one acting strongly at MAC] on specific receptors/channels might act synergistically, and that such deviations from additivity would support the notion that anesthetics act on multiple sites to produce anesthesia. METHODS: Accordingly, we studied the additivity of MAC for 11 anesthetic pairs divergently (one weakly, one strongly) affecting a specific receptor/channel at MAC. By "divergently," we usually meant that at MAC the more strongly acting anesthetic enhanced or blocked the in vitro receptor or channel at least twice (and usually more) as much as did the weakly acting anesthetic. The receptors/channels included: TREK-1 and TASK-3 potassium channels; and gamma-aminobutyric acid type A, glycine, N-methyl-D-aspartic acid, and acetylcholine receptors. We also studied the additivity of cyclopropane-benzene because the N-methyl-D-aspartic acid blocker MK-801 had divergent effects on the MACs of these anesthetics. We also studied four pairs that included nitrous oxide because nitrous oxide had been reported to produce infraadditivity (antagonism) when combined with isoflurane. RESULTS: All combinations produced a result within 10% of that which would be predicted by additivity except for the combination of isoflurane with nitrous oxide where infraadditivity was found. CONCLUSIONS: Such results are consistent with the notion that inhaled anesthetics act on a single site to produce immobility in the face of noxious stimulation.


Asunto(s)
Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Animales , Sinergismo Farmacológico , Inmovilización , Isoflurano/administración & dosificación , Isoflurano/farmacología , Óxido Nitroso/administración & dosificación , Óxido Nitroso/farmacología , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Colinérgicos/efectos de los fármacos , Receptores de GABA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
15.
Anesth Analg ; 107(2): 494-506, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18633028

RESUMEN

BACKGROUND: Drug interactions may reveal mechanisms of drug action: additive interactions suggest a common site of action, and synergistic interactions suggest different sites of action. We applied this reasoning in a review of published data on anesthetic drug interactions for the end-points of hypnosis and immobility. METHODS: We searched Medline for all manuscripts listing propofol, etomidate, methohexital, thiopental, midazolam, diazepam, ketamine, dexmedetomidine, clonidine, morphine, fentanyl, sufentanil, alfentanil, remifentanil, droperidol, metoclopramide, lidocaine, halothane, enflurane, isoflurane, sevoflurane, desflurane, N2O, and Xe that contained terms suggesting interaction: interaction, additive, additivity, synergy, synergism, synergistic, antagonism, antagonistic, isobologram, or isobolographic. When available, data were reanalyzed using fraction analysis or response surface analysis. RESULTS: Between drug classes, most interactions were synergistic. The major exception was ketamine, which typically interacted in either an additive or infra-additive (antagonistic) manner. Inhaled anesthetics typically showed synergy with IV anesthetics, but were additive or, in the case of nitrous oxide and isoflurane, possibly infra-additive, with each other. CONCLUSIONS: Except for ketamine, IV anesthetics acting at different sites usually demonstrated synergy. Inhaled anesthetics usually demonstrated synergy with IV anesthetics, but no pair of inhaled anesthetics interacted synergistically.


Asunto(s)
Anestésicos/farmacología , Anestésicos/administración & dosificación , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacología , Animales , Interacciones Farmacológicas , Humanos
16.
Behav Brain Res ; 193(2): 192-6, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18572259

RESUMEN

The molecular site of action for volatile anesthetics remains unknown despite many years of study. Members of the K(2P) potassium channel family, whose currents are potentiated by volatile anesthetics have emerged as possible anesthetic targets. In fact, a mouse model in which the gene for TREK-1 (KCNK2) has been inactivated shows resistance to volatile anesthetics. In this study we tested whether inactivation of another member of this ion channel family, KCNK7, in a knockout mouse displayed altered sensitivity to the anesthetizing effect of volatile anesthetics. KCNK7 knockout mice were produced by standard gene inactivation methods. Heterozygous breeding pairs produced animals that were homozygous, heterozygous or wild-type for the inactivated gene. Knockout animals were tested for movement in response to noxious stimulus (tail clamp) under varying concentrations of isoflurane, halothane, and desflurane to define the minimum alveolar concentration (MAC) preventing movement. Mice homozygous for inactivated KCNK7 were viable and indistinguishable in weight, general development and behavior from heterozygotes or wild-type littermates. Knockout mice (KCNK7-/-) displayed no difference in MAC for the three volatile anesthetics compared to heterozygous (+/-) or wild-type (+/+) littermates. Because inactivation of KCNK7 does not alter MAC, KCNK7 may play only a minor role in normal CNS function or may have had its function compensated for by other inhibitory mechanisms. Additional studies with transgenic animals will help define the overall role of the K(2P) channels in normal neurophysiology and in volatile anesthetic mechanisms.


Asunto(s)
Anestésicos por Inhalación/farmacología , Canales de Potasio/genética , Alveolos Pulmonares/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/genética , Secuencia de Aminoácidos , Animales , Desflurano , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Halotano/farmacología , Isoflurano/análogos & derivados , Isoflurano/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Canales de Potasio/fisiología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiología , Homología de Secuencia de Aminoácido , Canales de Potasio de la Superfamilia Shaker/fisiología
17.
Anesth Analg ; 106(3): 838-45, table of contents, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18292428

RESUMEN

INTRODUCTION: No theory of inhaled anesthetic action requires volatility of the anesthetic to accomplish the biophysical interaction of anesthetic with biological target. The identification of mutations that attenuate the effect of inhaled anesthetics on various receptors raises the possibility that nonvolatile compounds with anesthetic effects can be identified with the aid of these receptors. In previous studies, we identified compounds that were either charged or had an exceptionally low vapor pressure and which modulated anesthetic-sensitive receptors in a manner similar to inhaled anesthetics. We tested whether these, and another charged compound, shared a common mechanism with volatile anesthetics, by comparing their effect on wild-type gamma-aminobutyric acid type A (GABA(A)) or glycine receptors and mutant receptors that were engineered to be relatively resistant to inhaled anesthetics. METHODS: The effect of beta-hydroxybutyric acid, ammonium chloride, diethylhexyl phthalate, and GABA were tested on homomeric alpha1 and mutant alpha1 (S267I) glycine receptors. The effect of sodium dodecyl sulfate and glycine were tested on alpha1 b2 gamma2s and mutant alpha1(S270I) beta2 gamma2s GABA(A) receptors. Receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. For both GABA(A) and glycine receptors, isoflurane and ethanol were used as positive controls and propofol as a negative control (i.e., unaffected by the mutation). RESULTS: Beta-hydroxybutyric acid, ammonium chloride, diethylhexyl phthalate, and GABA all enhanced glycine receptor function. This effect was reduced by the S267I mutations. Sodium dodecyl sulfate and glycine enhanced GABA(A) receptor function, and the S270I mutation attenuated this effect. CONCLUSION: These findings support the hypothesis that the compounds studied modulate GABA(A) or glycine receptors by a mechanism similar to that of isoflurane and ethanol. Comparing the effect of drugs on anesthetic-sensitive wild-type receptors with relatively less sensitive mutant receptors may help identify compounds with anesthetic effects.


Asunto(s)
Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Anestésicos/farmacología , Mutación Puntual , Receptores de GABA-A/efectos de los fármacos , Receptores de Glicina/efectos de los fármacos , Ácido 3-Hidroxibutírico/metabolismo , Cloruro de Amonio/farmacología , Anestésicos/química , Anestésicos/metabolismo , Anestésicos por Inhalación/química , Animales , Dietilhexil Ftalato/farmacología , Relación Dosis-Respuesta a Droga , Etanol/farmacología , Femenino , Glicina/metabolismo , Humanos , Isoflurano/farmacología , Potenciales de la Membrana/efectos de los fármacos , Oocitos , Propofol/farmacología , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Dodecil Sulfato de Sodio/farmacología , Relación Estructura-Actividad , Xenopus laevis , Ácido gamma-Aminobutírico/metabolismo
18.
Anesth Analg ; 105(3): 661-5, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17717220

RESUMEN

BACKGROUND: Previous studies demonstrated that MAC (the minimum alveolar concentration of an inhaled anesthetic that produces immobility in 50% of subjects exposed to noxious stimulation) for halothane directly correlates with the central nervous system concentration of Na+. However, those studies globally altered Na+ concentrations, and thus did not distinguish effects on the spinal cord from cerebral effects. This is an important distinction because the cord appears to be the primary site for mediation of the immobility produced by inhaled anesthetics. Accordingly, in the present study, we examined the effect of altering intrathecal versus intracerebroventricular concentrations of Na+ on MAC. METHODS: In rats prepared with chronic indwelling catheters or stylets, we infused solutions deficient in Na+ and with an excess of Na+ into the lumbar subarachnoid and intracerebroventricular spaces and measured MAC for isoflurane before, during, and after infusion. RESULTS: MAC of isoflurane correlated directly with concentrations of Na+ infused intrathecally but did not correlate with concentrations infused intracerebroventricularly. CONCLUSION: The results are consistent with a mediation or modulation of MAC by Na+ channels. These might include voltage-gated or ligand-gated channels or other Na-sensitive targets (e.g., pumps, transporters, exchangers).


Asunto(s)
Anestésicos por Inhalación/metabolismo , Ventrículos Cerebrales/metabolismo , Isoflurano/metabolismo , Alveolos Pulmonares/metabolismo , Cloruro de Sodio/administración & dosificación , Sodio/metabolismo , Médula Espinal/metabolismo , Administración por Inhalación , Anestésicos por Inhalación/administración & dosificación , Animales , Ventrículos Cerebrales/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inyecciones Intraventriculares , Inyecciones Espinales , Isoflurano/administración & dosificación , Masculino , Ratas , Ratas Long-Evans , Reproducibilidad de los Resultados , Sodio/líquido cefalorraquídeo , Canales de Sodio/metabolismo , Cloruro de Sodio/metabolismo , Médula Espinal/efectos de los fármacos , Espacio Subaracnoideo/efectos de los fármacos , Espacio Subaracnoideo/metabolismo
19.
Anesth Analg ; 105(3): 673-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17717222

RESUMEN

BACKGROUND: We tested the hypothesis that two metabolites that are elevated in ketosis (beta-hydroxybutyric acid, and acetone) modulate ion channels in a manner similar to anesthetics and produce anesthesia in animals. METHODS: alpha1beta2gamma2sgamma-aminobutyric acid type A (GABA(A)), alpha1 glycine, NR1/NR2A N-methyl-d-aspartate, and two pore domain TRESK channels were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. The effect of beta hydroxybutyric acid and acetone on channel function was measured. The anesthetic effects of these drugs were measured in X. laevis tadpoles. RESULTS: Both beta hydroxybutyric acid and acetone enhanced glycine receptor function in the concentration range that is obtained in ketoacidosis in humans. Beta hydroxybutyric acid also enhanced GABA(A) receptor function at these concentrations. Both acetone and beta-hydroxybutyric acid anesthetized tadpoles, with an EC50 for acetone of 264 +/- 2 mM (mean +/- se) and for beta-hydroxybutyric acid of 151 +/- 11 mM at pH 7.0. Acetone enhanced GABA(A) receptors at concentrations of 50 mM and above. Inhibition of TRESK channel function was seen with 100 mM acetone or larger concentration. N-methyl-D-aspartate receptor function was inhibited at concentrations of acetone of 200 mM and larger. CONCLUSIONS: Beta hydroxybutyric acid and acetone are anesthetics. Both ketone bodies enhance inhibitory glycine receptors at concentrations observed clinically in ketoacidosis. In addition, beta-hydroxybutyric acid enhances GABA(A) receptor function at these concentrations. Subanesthetic concentrations of these drugs may contribute to the lethargy and impairment of consciousness seen in ketoacidosis.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Acetona/farmacología , Anestésicos/farmacología , Canales Iónicos/efectos de los fármacos , Cuerpos Cetónicos/farmacología , Movimiento/efectos de los fármacos , Ácido 3-Hidroxibutírico/metabolismo , Acetona/metabolismo , Anestésicos/metabolismo , Animales , Cetoacidosis Diabética/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Cuerpos Cetónicos/metabolismo , Larva/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Oocitos , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Ratas , Receptores de GABA-A/efectos de los fármacos , Receptores de Glicina/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Xenopus laevis
20.
Anesth Analg ; 105(2): 381-5, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17646494

RESUMEN

BACKGROUND: The minimum alveolar concentration (MAC) of isoflurane is a quantitative trait because it varies continuously in a population. The location on the genome of genes or other genetic elements controlling quantiative traits is called quantitative trait loci (QTLs). In this study we sought to detect a quantitative trait locus underlying isoflurane MAC in mice. METHODS: To accomplish this, two inbred mouse strains differing in isoflurane MAC, the C57BL/6J and LP/J mouse strains, were bred through two generations to produce genetic recombination. These animals were genotyped for microsatellite markers. We also applied an independent, computational method for identifying QTL-regulating differences in isoflurane MAC. In this approach, the isoflurane MAC was measured in a panel of 19 inbred strains, and computationally searched for genomic intervals where the pattern of genetic variation, based on single nucleotide polymorphisms, correlated with the differences in isoflurane MAC among inbred strains. RESULTS AND CONCLUSIONS: Both methods of genetic analysis identified a QTL for isoflurane MAC that was located on the proximal part of mouse chromosome 7.


Asunto(s)
Cromosomas de los Mamíferos/genética , Isoflurano/farmacocinética , Alveolos Pulmonares/metabolismo , Sitios de Carácter Cuantitativo/genética , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Repeticiones de Microsatélite/genética , Alveolos Pulmonares/efectos de los fármacos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA