Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 10(14): eadl0335, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569032

RESUMEN

The rapid growth of clean energy technologies is driving a rising demand for critical minerals. In 2022 at the 15th Conference of the Parties to the Convention on Biological Diversity (COP15), seven major economies formed an alliance to enhance the sustainability of mining these essential decarbonization minerals. However, there is a scarcity of studies assessing the threat of mining to global biodiversity. By integrating a global mining dataset with great ape density distribution, we estimated the number of African great apes that spatially coincided with industrial mining projects. We show that up to one-third of Africa's great ape population faces mining-related risks. In West Africa in particular, numerous mining areas overlap with fragmented ape habitats, often in high-density ape regions. For 97% of mining areas, no ape survey data are available, underscoring the importance of increased accessibility to environmental data within the mining sector to facilitate research into the complex interactions between mining, climate, biodiversity, and sustainability.


Asunto(s)
Hominidae , Animales , Ecosistema , Biodiversidad , Minerales , África Occidental
2.
PLoS Biol ; 20(8): e3001707, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040953

RESUMEN

Hunting and its impacts on wildlife are typically studied regionally, with a particular focus on the Global South. Hunting can, however, also undermine rewilding efforts or threaten wildlife in the Global North. Little is known about how hunting manifests under varying socioeconomic and ecological contexts across the Global South and North. Herein, we examined differences and commonalities in hunting characteristics across an exemplary Global South-North gradient approximated by the Human Development Index (HDI) using face-to-face interviews with 114 protected area (PA) managers in 25 African and European countries. Generally, we observed that hunting ranges from the illegal, economically motivated, and unsustainable hunting of herbivores in the South to the legal, socially and ecologically motivated hunting of ungulates within parks and the illegal hunting of mainly predators outside parks in the North. Commonalities across this Africa-Europe South-North gradient included increased conflict-related killings in human-dominated landscapes and decreased illegal hunting with beneficial community conditions, such as mutual trust resulting from community involvement in PA management. Nevertheless, local conditions cannot outweigh the strong effect of the HDI on unsustainable hunting. Our findings highlight regional challenges that require collaborative, integrative efforts in wildlife conservation across actors, while identified commonalities may outline universal mechanisms for achieving this goal.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , África , Animales , Europa (Continente) , Humanos , Caza , Mamíferos
3.
Am J Primatol ; 83(12): e23338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662462

RESUMEN

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.


Asunto(s)
Hominidae , África Central , África Occidental , Animales , República Centroafricana , Recolección de Datos , Gorilla gorilla , Pan troglodytes
4.
Ecol Evol ; 10(24): 14282-14299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391715

RESUMEN

As a result of extensive data collection efforts over the last 20-30 years, there is quite a good understanding of the large-scale geographic distribution and range limits of African great apes. However, as human activities increasingly fragment great ape spatial distribution, a better understanding of what constitutes suitable great ape habitat is needed to inform conservation and resource extraction management. Chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) inhabit the Lobéké National Park and its surrounding forest management units (FMUs) in South-East Cameroon. Both park and neighboring forestry concessions require reliable evidence on key factors driving great ape distribution for their management plans, yet this information is largely missing and incomplete. This study aimed at mapping great ape habitat suitability in the area and at identifying the most influential predictors among three predictor categories, including landscape predictors (dense forest, swampy forest, distance to water bodies, and topography), human disturbance predictors (hunting, deforestation, distance to roads, and population density), and bioclimatic predictor (annual precipitation). We found that about 63% of highly to moderately suitable chimpanzee habitat occurred within the Lobéké National Park, while only 8.4% of similar habitat conditions occurred within FMUs. For gorillas, highly and moderately suitable habitats occurred within the Lobéké National Park and its surrounding FMUs (82.6% and 65.5%, respectively). Key determinants of suitable chimpanzee habitat were hunting pressure and dense forest, with species occurrence probability optimal at relatively lower hunting rates and at relatively high-dense forest areas. Key determinants of suitable gorilla habitat were hunting pressure, dense forests, swampy forests, and slope, with species occurrence probability optimal at relatively high-dense and swampy forest areas and at areas with mild slopes. Our findings show differential response of the two ape species to forestry activities in the study area, thus aligning with previous studies.

5.
Sci Rep ; 9(1): 1445, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723223

RESUMEN

Understanding the effects of land cover change on wildlife distribution is very important for resource management and conservation planning. This paper aimed at detecting the effects of land cover change on great apes distribution at the Lobéké National Park and its bounded forest management units (FMUs). Data on great ape nests were collected in the field for the years 2001 and 2014 through distance sampling with line transects. Landsat TM images of South-East Cameroon for the years 2001 and 2014 were acquired from earth explorer and corrected atmospherically for proper visualization. An area of interest comprising the Lobéké National Park and its FMUs was extracted for classification and change detection. A comparison in great apes nest distribution and change per land cover change category was done for both years through point pattern analysis, whereas a time series analysis of the detected land cover change impacts on great apes nest distribution for a period of 13 years was modeled using logistic growth and regression equations in Vensim 7.2. The results could illustrate that, as land cover changes from one cover type in 2001 to another in 2014, increases or decreases in great apes nests were observed within each changed area.


Asunto(s)
Distribución Animal , Bosques , Hominidae/fisiología , Animales , Biomasa , Camerún , Modelos Estadísticos , Comportamiento de Nidificación , Parques Recreativos/estadística & datos numéricos
6.
Am J Primatol ; 79(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28671715

RESUMEN

African large mammals are under extreme pressure from unsustainable hunting and habitat loss. Certain traits make large mammals particularly vulnerable. These include late age at first reproduction, long inter-birth intervals, and low population density. Great apes are a prime example of such vulnerability, exhibiting all of these traits. Here we assess the rate of population change for the western chimpanzee, Pan troglodytes verus, over a 24-year period. As a proxy for change in abundance, we used transect nest count data from 20 different sites archived in the IUCN SSC A.P.E.S. database, representing 25,000 of the estimated remaining 35,000 western chimpanzees. For each of the 20 sites, datasets for 2 different years were available. We estimated site-specific and global population change using Generalized Linear Models. At 12 of these sites, we detected a significant negative trend. The estimated change in the subspecies abundance, as approximated by nest encounter rate, yielded a 6% annual decline and a total decline of 80.2% over the study period from 1990 to 2014. This also resulted in a reduced geographic range of 20% (657,600 vs. 524,100 km2 ). Poverty, civil conflict, disease pandemics, agriculture, extractive industries, infrastructure development, and lack of law enforcement, are some of the many reasons for the magnitude of threat. Our status update triggered the uplisting of the western chimpanzee to "Critically Endangered" on the IUCN Red List. In 2017, IUCN will start updating the 2003 Action Plan for western chimpanzees and will provide a consensus blueprint for what is needed to save this subspecies. We make a plea for greater commitment to conservation in West Africa across sectors. Needed especially is more robust engagement by national governments, integration of conservation priorities into the private sector and development planning across the region and sustained financial support from donors.


Asunto(s)
Ecosistema , Pan troglodytes , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA