Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
2.
Nat Cell Biol ; 25(11): 1575-1589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770567

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.


Asunto(s)
ADN Mitocondrial , Nucleósido-Difosfato Quinasa , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica , Fosforilación Oxidativa , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Methods Mol Biol ; 2661: 257-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166642

RESUMEN

To understand the human mitochondrial translation process, tools are required to dissect this system at a global scale. The mechanisms and regulation of translation in mitochondria are different from those in the cytosol, and mitochondrial ribosomes have distinct biochemical properties. In this chapter, we describe in detail the modifications we have made to the ribosome profiling approach to adapt it to the unique characteristics of the human mitochondrial ribosome. This approach maximizes the fraction of mitochondrial ribosomes recovered, providing a snapshot of the mitochondrial translation landscape with minimal bias. We also describe the use of mouse lysate as an internal spike-in control for normalization, allowing quantification of global changes in translation across samples. Finally, we outline the bioinformatic pipelines to process the raw reads and identify mitoribosome A sites in the absence of untranslated regions flanking open reading frames. This method offers a subcodon-resolution time-sensitive global approach to explore the mitochondrial translation process in human cells.


Asunto(s)
Ribosomas Mitocondriales , Ribosomas , Humanos , Animales , Ratones , Ribosomas Mitocondriales/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Mitocondrias/genética , Sistemas de Lectura Abierta , Proteínas Mitocondriales/metabolismo
4.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36824735

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.

5.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798306

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.

6.
Genome Biol ; 23(1): 170, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945592

RESUMEN

BACKGROUND: Oxidative phosphorylation (OXPHOS) complexes consist of nuclear and mitochondrial DNA-encoded subunits. Their biogenesis requires cross-compartment gene regulation to mitigate the accumulation of disproportionate subunits. To determine how human cells coordinate mitochondrial and nuclear gene expression processes, we tailored ribosome profiling for the unique features of the human mitoribosome. RESULTS: We resolve features of mitochondrial translation initiation and identify a small ORF in the 3' UTR of MT-ND5. Analysis of ribosome footprints in five cell types reveals that average mitochondrial synthesis levels correspond precisely to cytosolic levels across OXPHOS complexes, and these average rates reflect the relative abundances of the complexes. Balanced mitochondrial and cytosolic synthesis does not rely on rapid feedback between the two translation systems, and imbalance caused by mitochondrial translation deficiency is associated with the induction of proteotoxicity pathways. CONCLUSIONS: Based on our findings, we propose that human OXPHOS complexes are synthesized proportionally to each other, with mitonuclear balance relying on the regulation of OXPHOS subunit translation across cellular compartments, which may represent a proteostasis vulnerability.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas
7.
Nature ; 533(7604): 499-503, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225121

RESUMEN

Oxidative phosphorylation (OXPHOS) is a vital process for energy generation, and is carried out by complexes within the mitochondria. OXPHOS complexes pose a unique challenge for cells because their subunits are encoded on both the nuclear and the mitochondrial genomes. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to mitochondria, so the co-regulation of OXPHOS genes remains largely unexplored. Here we monitor mitochondrial and nuclear gene expression in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. We show that nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, mitochondrial and cytosolic translation are rapidly, dynamically and synchronously regulated. Furthermore, cytosolic translation processes control mitochondrial translation unidirectionally. Thus, the nuclear genome coordinates mitochondrial and cytosolic translation to orchestrate the timely synthesis of OXPHOS complexes, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for studies of global gene regulation in mitochondria.


Asunto(s)
Núcleo Celular/genética , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Mitocondriales/biosíntesis , Fosforilación Oxidativa , Biosíntesis de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Genes Mitocondriales/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Biogénesis de Organelos , Proteoma/biosíntesis , Proteoma/genética , ARN de Hongos/análisis , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Antioxid Redox Signal ; 24(6): 281-98, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26415097

RESUMEN

AIM: Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. RESULTS: We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. INNOVATION: H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. CONCLUSION: The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Hemo/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Oxidación-Reducción
9.
Antioxid Redox Signal ; 19(16): 1940-52, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22937827

RESUMEN

SIGNIFICANCE: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Mitocondrias/enzimología , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción
10.
Cell Metab ; 16(6): 801-13, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23217259

RESUMEN

Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae, a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Hemo/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Cinética , Recambio Mitocondrial , Datos de Secuencia Molecular , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Mol Cell Biol ; 30(1): 245-59, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19858289

RESUMEN

The intricate biogenesis of multimeric organellar enzymes of dual genetic origin entails several levels of regulation. In Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) assembly is regulated translationally. Synthesis of subunit 1 (Cox1) is contingent on the availability of its assembly partners, thereby acting as a negative feedback loop that coordinates COX1 mRNA translation with Cox1 utilization during COX assembly. The COX1 mRNA-specific translational activator Mss51 plays a fundamental role in this process. Here, we report that Mss51 successively interacts with the COX1 mRNA translational apparatus, newly synthesized Cox1, and other COX assembly factors during Cox1 maturation/assembly. Notably, the mitochondrial Hsp70 chaperone Ssc1 is shown to be an Mss51 partner throughout its metabolic cycle. We conclude that Ssc1, by interacting with Mss51 and Mss51-containing complexes, plays a critical role in Cox1 biogenesis, COX assembly, and the translational regulation of these processes.


Asunto(s)
ATPasas Transportadoras de Calcio/fisiología , Complejo IV de Transporte de Electrones/biosíntesis , Chaperonas Moleculares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Complejo IV de Transporte de Electrones/genética , Peso Molecular , Mutación , Biosíntesis de Proteínas , Mapeo de Interacción de Proteínas , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA