Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Biomed Eng ; 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455719

RESUMEN

The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8+ T cells and to the suppression of the formation of regulatory T cells. Notably, activating and expanding chimaeric antigen receptor (CAR) T cells with SynVACs led to a CAR-transduction efficiency of approximately 90% and to substantial increases in T memory stem cells. The engineered CAR T cells eliminated tumour cells in a mouse model of human lymphoma, suppressed tumour growth in mice with human ovarian cancer xenografts, persisted for longer periods and reduced tumour-recurrence risk. Our findings underscore the crucial roles of viscoelasticity in T-cell engineering and highlight the utility of SynVACs in cancer therapy.

3.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003263

RESUMEN

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Asunto(s)
Diferenciación Celular , Receptores Notch , Transducción de Señal , Ingeniería de Tejidos , Receptores Notch/metabolismo , Ingeniería de Tejidos/métodos , Animales , Humanos , Ratones , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ligandos , Andamios del Tejido/química , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células HEK293
4.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659850

RESUMEN

Living tissue and extracellular matrices possess viscoelastic properties, but understanding how viscoelastic matrix regulates chromatin and the epigenome is limited. Here, we find that the regulation of the epigenetic state by the viscoelastic matrix is more pronounced on softer matrices. Cells on viscoelastic matrices exhibit larger nuclei, increased nuclear lamina ruffling, loosely organized chromatin, and faster chromatin dynamics, compared to those on elastic matrices. These changes are accompanied by a global increase in euchromatic marks and a local increase in chromatin accessibility at the cis -regulatory elements associated with neuronal and pluripotent genes. Consequently, viscoelastic matrices enhanced the efficiency of reprogramming fibroblasts into neurons and induced pluripotent stem cells, respectively. Together, our findings demonstrate the key roles of matrix viscoelasticity in the regulation of epigenetic state, and uncover a new mechanism of biophysical regulation of chromatin and cell reprogramming, with implications for the design of smart materials to engineer cell fate.

5.
Sci Adv ; 10(7): eadk0639, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354231

RESUMEN

We investigate how matrix stiffness regulates chromatin reorganization and cell reprogramming and find that matrix stiffness acts as a biphasic regulator of epigenetic state and fibroblast-to-neuron conversion efficiency, maximized at an intermediate stiffness of 20 kPa. ATAC sequencing analysis shows the same trend of chromatin accessibility to neuronal genes at these stiffness levels. Concurrently, we observe peak levels of histone acetylation and histone acetyltransferase (HAT) activity in the nucleus on 20 kPa matrices, and inhibiting HAT activity abolishes matrix stiffness effects. G-actin and cofilin, the cotransporters shuttling HAT into the nucleus, rises with decreasing matrix stiffness; however, reduced importin-9 on soft matrices limits nuclear transport. These two factors result in a biphasic regulation of HAT transport into nucleus, which is directly demonstrated on matrices with dynamically tunable stiffness. Our findings unravel a mechanism of the mechano-epigenetic regulation that is valuable for cell engineering in disease modeling and regenerative medicine applications.


Asunto(s)
Reprogramación Celular , Cromatina , Cromatina/genética , Reprogramación Celular/genética , Fibroblastos , Epigénesis Genética
6.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686965

RESUMEN

Following the global spread of COVID-19, scientists and engineers have adapted technologies and developed new tools to aid in the fight against COVID-19. This review discusses various approaches to engineering biomaterials, devices, and therapeutics, especially at micro and nano levels, for the prevention, diagnosis, and treatment of infectious diseases, such as COVID-19, serving as a resource for scientists to identify specific tools that can be applicable for infectious-disease-related research, technology development, and treatment. From the design and production of equipment critical to first responders and patients using three-dimensional (3D) printing technology to point-of-care devices for rapid diagnosis, these technologies and tools have been essential to address current global needs for the prevention and detection of diseases. Moreover, advancements in organ-on-a-chip platforms provide a valuable platform to not only study infections and disease development in humans but also allow for the screening of more effective therapeutics. In addition, vaccines, the repurposing of approved drugs, biomaterials, drug delivery, and cell therapy are promising approaches for the prevention and treatment of infectious diseases. Following a comprehensive review of all these topics, we discuss unsolved problems and future directions.

7.
Adv Sci (Weinh) ; 10(24): e2300152, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357983

RESUMEN

The role of transcription factors and biomolecules in cell type conversion has been widely studied. Yet, it remains unclear whether and how intracellular mechanotransduction through focal adhesions (FAs) and the cytoskeleton regulates the epigenetic state and cell reprogramming. Here, it is shown that cytoskeletal structures and the mechanical properties of cells are modulated during the early phase of induced neuronal (iN) reprogramming, with an increase in actin cytoskeleton assembly induced by Ascl1 transgene. The reduction of actin cytoskeletal tension or cell adhesion at the early phase of reprogramming suppresses the expression of mesenchymal genes, promotes a more open chromatin structure, and significantly enhances the efficiency of iN conversion. Specifically, reduction of intracellular tension or cell adhesion not only modulates global epigenetic marks, but also decreases DNA methylation and heterochromatin marks and increases euchromatin marks at the promoter of neuronal genes, thus enhancing the accessibility for gene activation. Finally, micro- and nano-topographic surfaces that reduce cell adhesions enhance iN reprogramming. These novel findings suggest that the actin cytoskeleton and FAs play an important role in epigenetic regulation for cell fate determination, which may lead to novel engineering approaches for cell reprogramming.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Adhesión Celular , Mecanotransducción Celular , Cromatina
8.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37293089

RESUMEN

Synthetic Notch (synNotch) receptors are modular synthetic components that are genetically engineered into mammalian cells to detect signals presented by neighboring cells and respond by activating prescribed transcriptional programs. To date, synNotch has been used to program therapeutic cells and pattern morphogenesis in multicellular systems. However, cell-presented ligands have limited versatility for applications that require spatial precision, such as tissue engineering. To address this, we developed a suite of materials to activate synNotch receptors and serve as generalizable platforms for generating user-defined material-to-cell signaling pathways. First, we demonstrate that synNotch ligands, such as GFP, can be conjugated to cell- generated ECM proteins via genetic engineering of fibronectin produced by fibroblasts. We then used enzymatic or click chemistry to covalently link synNotch ligands to gelatin polymers to activate synNotch receptors in cells grown on or within a hydrogel. To achieve microscale control over synNotch activation in cell monolayers, we microcontact printed synNotch ligands onto a surface. We also patterned tissues comprising cells with up to three distinct phenotypes by engineering cells with two distinct synthetic pathways and culturing them on surfaces microfluidically patterned with two synNotch ligands. We showcase this technology by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined spatial patterns towards the engineering of muscle tissue with prescribed vascular networks. Collectively, this suite of approaches extends the synNotch toolkit and provides novel avenues for spatially controlling cellular phenotypes in mammalian multicellular systems, with many broad applications in developmental biology, synthetic morphogenesis, human tissue modeling, and regenerative medicine.

9.
Adv Mater ; 35(7): e2206933, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36468617

RESUMEN

Developing scalable electrical stimulating platforms for cell and tissue engineering applications is limited by external power source dependency, wetting resistance, microscale size requirements, and suitable flexibility. Here, a versatile and scalable platform is developed to enable tunable electrical stimulation for biological applications by harnessing the giant magnetoelastic effect in soft systems, converting gentle air pressure (100-400 kPa) to yield a current of up to 10.5 mA and a voltage of 9.5 mV. The platform can be easily manufactured and scaled up for integration in multiwell magnetoelastic plates via 3D printing. The authors demonstrate that the electrical stimulation generated by this platform enhances the conversion of fibroblasts into neurons up to 2-fold (104%) and subsequent neuronal maturation up to 3-fold (251%). This easily configurable electrical stimulation device has broad applications in high throughput organ-on-a-chip systems, and paves the way for future development of neural engineering, including cellular therapy via implantable self-powered electrical stimulation devices.


Asunto(s)
Suministros de Energía Eléctrica , Neuronas , Prótesis e Implantes , Fibroblastos , Ingeniería de Tejidos
10.
Nat Mater ; 21(10): 1191-1199, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927431

RESUMEN

Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.


Asunto(s)
Reprogramación Celular , Histonas , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo
11.
Stem Cell Res Ther ; 13(1): 205, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578348

RESUMEN

BACKGROUND: Muscle denervation from trauma and motor neuron disease causes disabling morbidities. A limiting step in functional recovery is the regeneration of neuromuscular junctions (NMJs) for reinnervation. Stem cells have the potential to promote these regenerative processes, but current approaches have limited success, and the optimal types of stem cells remain to be determined. Neural crest stem cells (NCSCs), as the developmental precursors of the peripheral nervous system, are uniquely advantageous, but the role of NCSCs in neuromuscular regeneration is not clear. Furthermore, a cell delivery approach that can maintain NCSC survival upon transplantation is critical. METHODS: We established a streamlined protocol to derive, isolate, and characterize functional p75+ NCSCs from human iPSCs without genome integration of reprogramming factors. To enhance survival rate upon delivery in vivo, NCSCs were centrifuged in microwell plates to form spheroids of desirable size by controlling suspension cell density. Human bone marrow mesenchymal stem cells (MSCs) were also studied for comparison. NCSC or MSC spheroids were injected into the gastrocnemius muscle with denervation injury, and the effects on NMJ formation and functional recovery were investigated. The spheroids were also co-cultured with engineered neuromuscular tissue to assess effects on NMJ formation in vitro. RESULTS: NCSCs cultured in spheroids displayed enhanced secretion of soluble factors involved in neuromuscular regeneration. Intramuscular transplantation of spheroids enabled long-term survival and retention of NCSCs, in contrast to the transplantation of single-cell suspensions. Furthermore, NCSC spheroids significantly improved functional recovery after four weeks as shown by gait analysis, electrophysiology, and the rate of NMJ innervation. MSC spheroids, on the other hand, had insignificant effect. In vitro co-culture of NCSC or MSC spheroids with engineered myotubes and motor neurons further evidenced improved innervated NMJ formation with NCSC spheroids. CONCLUSIONS: We demonstrate that stem cell type is critical for neuromuscular regeneration and that NCSCs have a distinct advantage and therapeutic potential to promote reinnervation following peripheral nerve injury. Biophysical effects of spheroidal culture, in particular, enable long-term NCSC survival following in vivo delivery. Furthermore, synthetic neuromuscular tissue, or "tissues-on-a-chip," may offer a platform to evaluate stem cells for neuromuscular regeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Desnervación , Humanos , Cresta Neural , Neurogénesis/fisiología
12.
Adv Sci (Weinh) ; 8(7): 2003516, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854891

RESUMEN

Cell reprogramming is considered a stochastic process, and it is not clear which cells are prone to be reprogrammed and whether a deterministic step exists. Here, asymmetric cell division (ACD) at the early stage of induced neuronal (iN) reprogramming is shown to play a deterministic role in generating elite cells for reprogramming. Within one day, fibroblasts underwent ACD, with one daughter cell being converted into an iN precursor and the other one remaining as a fibroblast. Inhibition of ACD significantly inhibited iN conversion. Moreover, the daughter cells showed asymmetric DNA segregation and histone marks during cytokinesis, and the cells inheriting newly replicated DNA strands during ACD became iN precursors. These results unravel a deterministic step at the early phase of cell reprogramming and demonstrate a novel role of ACD in cell phenotype change. This work also supports a novel hypothesis that daughter cells with newly replicated DNA strands are elite cells for reprogramming, which remains to be tested in various reprogramming processes.


Asunto(s)
División Celular Asimétrica/fisiología , Reprogramación Celular/fisiología , Fibroblastos/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Animales
13.
Nat Biomed Eng ; 5(8): 864-879, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33737730

RESUMEN

Muscle loss and impairment resulting from traumatic injury can be alleviated by therapies using muscle stem cells. However, collecting sufficient numbers of autologous myogenic stem cells and expanding them efficiently has been challenging. Here we show that myogenic stem cells (predominantly Pax7+ cells)-which were selectively expanded from readily obtainable dermal fibroblasts or skeletal muscle stem cells using a specific cocktail of small molecules and transplanted into muscle injuries in adult, aged or dystrophic mice-led to functional muscle regeneration in the three animal models. We also show that sustained release of the small-molecule cocktail in situ through polymer nanoparticles led to muscle repair by inducing robust activation and expansion of resident satellite cells. Chemically induced stem cell expansion in vitro and in situ may prove to be advantageous for stem cell therapies that aim to regenerate skeletal muscle and other tissues.


Asunto(s)
Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/citología , Animales , Reprogramación Celular/efectos de los fármacos , Colforsina/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Enfermedades Musculares/terapia , Nanopartículas/química , Factor de Transcripción PAX7/metabolismo , Polímeros/química , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/trasplante , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Ácido Valproico/farmacología
14.
Stem Cells Transl Med ; 10(5): 681-693, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533168

RESUMEN

Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self-renewal and multipotency. These cells form at the interface of non-neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest-like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.


Asunto(s)
Células-Madre Neurales , Regeneración , Diferenciación Celular , Reprogramación Celular , Femenino , Humanos , Cresta Neural/citología , Células-Madre Neurales/citología , Placenta/citología , Células Madre Pluripotentes , Embarazo
15.
ACS Appl Mater Interfaces ; 13(5): 5929-5944, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502154

RESUMEN

Cross-linked polyacrylamide hydrogels are commonly used in biotechnology and cell culture applications due to advantageous properties, such as the precise control of material stiffness and the attachment of cell adhesive ligands. However, the chemical and physical properties of polyacrylamide gels cannot be altered once fabricated. Here, we develop a photodegradable polyacrylamide gel system that allows for a dynamic control of polyacrylamide gel stiffness with exposure to light. Photodegradable polyacrylamide hydrogel networks are produced by copolymerizing acrylamide and a photocleavable ortho-nitrobenzyl (o-NB) bis-acrylate cross-linker. When the hydrogels are exposed to light, the o-NB cross-links cleave and the stiffness of the photodegradable polyacrylamide gels decreases. Further examination of the effect of dynamic stiffness changes on cell behavior reveals that in situ softening of the culture substrate leads to changes in cell behavior that are not observed when cells are cultured on presoftened gels, indicating that both dynamic and static mechanical environments influence cell fate. Notably, we observe significant changes in nuclear localization of YAP and cytoskeletal organization after in situ softening; these changes further depend on the type and concentration of cell adhesive proteins attached to the gel surface. By incorporating the simplicity and well-established protocols of standard polyacrylamide gel fabrication with the dynamic control of photodegradable systems, we can enhance the capability of polyacrylamide gels, thereby enabling cell biologists and engineers to study more complex cellular behaviors that were previously inaccessible using regular polyacrylamide gels.


Asunto(s)
Resinas Acrílicas/farmacología , Hidrogeles/farmacología , Resinas Acrílicas/síntesis química , Resinas Acrílicas/química , Actinas/análisis , Animales , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Hidrogeles/síntesis química , Hidrogeles/química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
16.
Artículo en Inglés | MEDLINE | ID: mdl-33214755

RESUMEN

Cell plasticity is important in development and tissue remodeling. Cells can sense physical and chemical cues from their local microenvironment and transduce the signals into the nucleus to regulate the epigenetic state and gene expression, resulting in a change in cell phenotype. In this review, we highlight the role of mechanical cues in regulating stem cell differentiation and cell reprogramming through the modulation of histone modifications. The effects of various mechanical cues, including matrix stiffness, mechanical stretch, and shear stress, on cell fate during tissue regeneration and remodeling will be discussed. Taken together, recent work demonstrates that the alterations in histone modifications by mechanical stimuli can facilitate epigenetic changes during cell phenotypic switching, which has potential applications in the development of biomaterials and bioreactors for cell engineering.

17.
ACS Nano ; 14(2): 1296-1318, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32011856

RESUMEN

Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.


Asunto(s)
Materiales Biocompatibles/química , Nanotecnología , Ingeniería de Tejidos , Animales , Reprogramación Celular , Humanos , Tamaño de la Partícula , Propiedades de Superficie
18.
Biomaterials ; 234: 119743, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31962231

RESUMEN

Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Biofisica , Ingeniería Celular , Citoesqueleto
19.
Curr Opin Chem Eng ; 15: 95-101, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28413770

RESUMEN

Induced pluripotent stem (iPS) cell reprogramming and direct reprogramming are promising approaches for disease modeling and personalized medicine. However, these processes are yet to be optimized. Biomaterials are increasingly integrated into cell reprogramming strategies in order to engineer the microenvironment, improve reprogramming efficiency and achieve effective in situ cell reprogramming. Although there are some studies on the role of biomaterials in iPS cell reprogramming, their effect on direct cell conversion has not been fully explored. Here we review the recent advances in the use of biomaterials for iPS cell reprogramming and direct reprogramming, with a focus on the biophysical aspect. We further highlight the future challenges and directions of the field.

20.
Glia ; 65(6): 864-882, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28233923

RESUMEN

Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state. GLIA 2017;65:851-863.


Asunto(s)
Axones/fisiología , Desdiferenciación Celular/fisiología , Células de Schwann/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Células HEK293 , Humanos , MAP Quinasa Quinasa 4/metabolismo , Ratones , Neurregulina-1/metabolismo , Ratas , Células de Schwann/citología , Nervio Ciático/citología , Nervio Ciático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA