Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38701438

RESUMEN

Several studies have indicated a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in the gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. Female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard+flaxseed oil, and lard+safflower oil) for 10 weeks. Fecal 16s sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes, and gut microbiota, which may contribute to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk.

2.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546807

RESUMEN

The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.

3.
J Geriatr Oncol ; 14(4): 101478, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990930

RESUMEN

INTRODUCTION: Fatigue is a prevalent symptom among both cancer survivors and older adults. Negative consequences of fatigue include increased sedentary behavior, decreased physical activity and function, and lower quality of life. Few pharmacologic interventions improve fatigue. Our preclinical and clinical data show promising effects of a muscadine grape extract supplement (MGES) on oxidative stress, mitochondrial bioenergetics, the microbiome, and the symptom of fatigue. This pilot study seeks to translate these observations to cancer survivorship by testing the preliminary effect of MGE supplementation on older adult cancer survivors with self-reported fatigue. MATERIALS AND METHODS: We designed a double-blinded placebo-controlled pilot study to evaluate preliminary efficacy of MGE supplementation versus placebo on fatigue among older adult cancer survivors (aged ≥65 years) who report baseline fatigue. Sixty-four participants will be enrolled and randomized 1:1 to twice daily MGES (four tablets twice daily) versus placebo for 12 weeks. The primary outcome is change in Patient-Reported Outcomes Measurement Information System (PROMIS) Fatigue score from baseline to 12 weeks. Secondary outcomes are change in self-reported physical function, physical fitness (6-min walk test), self-reported physical activity, global quality of life (QOL), and the Fried frailty index. Correlative biomarker assays will assess changes in 8-hydroxy-2 deoxyguanosine, peripheral blood mitochondrial function, inflammatory markers, and the gut microbiome. DISCUSSION: This pilot study builds on preclinical and clinical observations to estimate effects of MGE supplementation on fatigue, physical function, QOL, and biologic correlates in older adult cancer survivors. Trial registration #: CT.govNCT04495751; IND 152908.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Vitis , Humanos , Anciano , Calidad de Vida , Proyectos Piloto , Fatiga/tratamiento farmacológico , Fatiga/etiología , Método Doble Ciego , Suplementos Dietéticos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico
4.
Am J Physiol Cell Physiol ; 324(3): C644-C657, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848617

RESUMEN

In utero dietary exposures are linked to the development of metabolic syndrome in adult offspring. These dietary exposures can potentially impact gut microbial composition and offspring metabolic health. Female BALB/c mice were administered a lard, lard + flaxseed oil, high sugar, or control diet 4 wk before mating, throughout mating, pregnancy, and lactation. Female offspring were offered low-fat control diet at weaning. Fecal 16S sequencing was performed. Untargeted metabolomics was performed on visceral adipose tissue (VAT) of adult female offspring. Immunohistochemistry was used to determine adipocyte size, VAT collagen deposition, and macrophage content. Hippurate was administered via weekly intraperitoneal injections to low-fat and high-fat diet-fed female mice and VAT fibrosis and collagen 1A (COL1A) were assessed by immunohistochemistry. Lard diet exposure was associated with elevated body and VAT weight and dysregulated glucose metabolism. Lard + flaxseed oil attenuated these effects. Lard diet exposures were associated with increased adipocyte diameter and VAT macrophage count. Lard + flaxseed oil reduced adipocyte diameter and fibrosis compared with the lard diet. Hippurate-associated bacteria were influenced by lard versus lard + flax exposures that persisted to adulthood. VAT hippurate was increased in lard + flaxseed oil compared with lard diet. Hippurate supplementation mitigated VAT fibrosis pathology. Maternal high-fat lard diet consumption resulted in long-term metabolic and gut microbiome programming in offspring, impacting VAT inflammation and fibrosis, and was associated with reduced VAT hippurate content. These traits were not observed in maternal high-fat lard + flaxseed oil diet-exposed offspring. Hippurate supplementation reduced VAT fibrosis. These data suggest that detrimental effects of early-life high-fat lard diet exposure can be attenuated by dietary omega-3 polyunsaturated fatty acid supplementation.


Asunto(s)
Microbioma Gastrointestinal , Embarazo , Ratones , Femenino , Animales , Grasa Intraabdominal/metabolismo , Aceite de Linaza/metabolismo , Exposición Dietética , Dieta Alta en Grasa/efectos adversos , Fibrosis
5.
Metabolites ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355119

RESUMEN

Thrombospondin-1 (TSP1) is a matricellular protein with many important roles in mediating carcinogenesis, fibrosis, leukocyte recruitment, and metabolism. We have previously shown a role of diet in the absence of TSP1 in liver metabolism in the context of a colorectal cancer model. However, the metabolic implications of TSP1 regulation by diet in the liver metabolism are currently understudied. Therefore Discrete correlation summation (DCS) was used to re-interrogate data and determine the metabolic alterations of TSP1 deficiency in the liver, providing new insights into the role of TSP1 in liver injury and the progression of liver pathologies such as nonalcoholic fatty liver disease (NAFLD). DCS analysis provides a straightforward approach to rank covariance and data clustering when analyzing complex data sets. Using this approach, our previous liver metabolite data was re-analyzed by comparing wild-type (WT) and Thrombospondin-1 null (Thbs1-/-) mice, identifying changes driven by genotype and diet. Principal component analysis showed clustering of animals by genotype regardless of diet, indicating that TSP1 deficiency alters metabolite handling in the liver. High-fat diet consumption significantly altered over 150 metabolites in the Thbs1-/- livers versus approximately 90 in the wild-type livers, most involved in amino acid metabolism. The absence of Thbs1 differentially regulated tryptophan and tricarboxylic acid cycle metabolites implicated in the progression of NAFLD. Overall, the lack of Thbs1 caused a significant shift in liver metabolism with potential implications for liver injury and the progression of NAFLD.

6.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36418073

RESUMEN

BACKGROUND: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics. METHODS: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden. Cytotoxic (CD8+) T cells from Pmel-1 transgenic mice were used for T cell activation, cytotoxic T lymphocyte, and cellular bioenergetic assays. Single-cell RNA-sequencing, ELISA, and flow cytometry was performed on peripheral blood mononuclear cells and plasma of melanoma patients receiving anti-PD-1 therapy to examine CD47/TSP1 expression. RESULTS: Human malignant melanoma tissue had increased CD47 and TSP1 expression within the tumor microenvironment compared with benign tissue. Due to the negative implications CD47/TSP1 can have on antitumor immune responses, we targeted CD47 in a melanoma model and observed a decrease in tumor burden due to increased tumor oxygen saturation and granzyme B secreting CD8+ T cells compared with wild-type tumors. Additionally, Pmel-1 CD8+ T cells exposed to TSP1 had reduced activation, proliferation, and effector function against B16 melanoma cells. Targeting CD47 allowed CD8+ T cells to overcome this TSP1 interaction to sustain these functions. TSP1 exposed CD8+ T cells have a decreased rate of glycolysis; however, targeting CD47 restored glycolysis when CD8+ T cells were exposed to TSP1, suggesting CD47 mediated metabolic reprogramming of T cells. Additionally, non-responding patients to anti-PD-1 therapy had increased T cells expressing CD47 and circulating levels of TSP1 compared with responding patients. Since CD47/TSP1 signaling axis negatively impacts CD8+ T cells and non-responding patients to anti-PD-1 therapy have increased CD47/TSP1 expression, we targeted CD47 in combination with anti-PD-1 in a melanoma model. Targeting CD47 in combination with anti-PD-1 treatment further decreased tumor burden compared with monotherapy and control. CONCLUSION: CD47/TSP1 expression could serve as a marker to predict patient response to immune checkpoint blockade treatment, and targeting this pathway may preserve T cell activation, proliferation, effector function, and bioenergetics to reduce tumor burden as a monotherapy or in combination with anti-PD-1.


Asunto(s)
Antígeno CD47 , Melanoma Experimental , Animales , Humanos , Ratones , Antígeno CD47/metabolismo , Metabolismo Energético , Leucocitos Mononucleares , Activación de Linfocitos , Melanoma Experimental/tratamiento farmacológico , Microambiente Tumoral , Trombospondina 1/metabolismo
7.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36230772

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive with a poor 5-year survival rate. Targeted therapy options are limited and most TNBC patients are treated with chemotherapy. This study aimed to determine whether doxorubicin (Dox) shifts the gut microbiome and whether gut microbiome populations influence chemotherapeutic responsiveness. Female BALB/c mice (n = 115) were injected with 4T1-luciferase cells (a murine syngeneic TNBC model) and treated with Dox and/or antibiotics, high-fat diet-derived fecal microbiota transplant (HFD-FMT), or exogenous lipopolysaccharide (LPS). Metagenomic sequencing was performed on fecal DNA samples. Mice that received Dox were stratified into Dox responders or Dox nonresponders. Mice from the Dox responders and antibiotics + Dox groups displayed reduced tumor weight and metastatic burden. Metagenomic analysis showed that Dox was associated with increased Akkermansia muciniphila proportional abundance. Moreover, Dox responders showed an elevated proportional abundance of Akkermansia muciniphila prior to Dox treatment. HFD-FMT potentiated tumor growth and decreased Dox responsiveness. Indeed, lipopolysaccharide, a structural component of Gram-negative bacteria, was increased in the plasma of Dox nonresponders and FMT + Dox mice. Treatment with exogenous LPS increases intestinal inflammation, reduces Dox responsiveness, and increases lung metastasis. Taken together, we show that modulating the gut microbiota through antibiotics, HFD-FMT, or by administering LPS influenced TNBC chemotherapy responsiveness, lung metastasis, and intestinal inflammation.

8.
Sci Rep ; 12(1): 9983, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705580

RESUMEN

Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status. Composition of the host-microbiome has a significant role in cancer development and therapeutic responsiveness. Some bacterial families are conducive to oncogenesis and progression, while others aid innate and therapeutically induced anti-tumor immunity. Modeling microbiome effects on anti-tumor immunity in ex vivo systems is challenging, forcing the use of in vivo models, making it difficult to dissect direct effects on immune cells from combined effects on tumor and immune cells. We developed a novel immune-enhanced tumor organoid (iTO) system to study factors affecting ICB response. Using the 4T1 TNBC murine cell line and matched splenocytes, we demonstrated ICB-induced response. Further administration of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression. These outcomes represent a method to isolate individual factors that alter ICB response and streamline the study of microbiome effects on ICB efficacy.


Asunto(s)
Microbiota , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Inmunomodulación , Inmunoterapia/métodos , Ratones , Organoides/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
9.
Redox Biol ; 53: 102338, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609400

RESUMEN

Doxorubicin (DOX) is one of the most effective anticancer agents in clinical oncology. Its continued use, however, is severely limited by its dose-dependent cardiotoxicity which stems, in part, from its overproduction of reactive oxygen species (ROS) and often manifests itself as full-blown cardiomyopathy in patients, years after the cessation of treatment. Therefore, identifying DOX analogs, or prodrugs, with a diminished cardiotoxic profile is highly desirable. Herein, we describe a novel, H2O2-responsive DOX hybrid codrug (mutual prodrug) that has been rationally designed to concurrently liberate hydrogen sulfide (H2S), a purported cardioprotectant with anticancer activity, in an effort to maintain the antitumor effects of DOX while simultaneously reducing its cardiotoxic side effects. Experiments with cardiomyoblast cells in culture demonstrated a rapid accumulation of prodrug into the cells, but diminished apoptotic effects compared with DOX, dependent upon its release of H2S. Cells treated with the prodrug exhibited significantly higher Nrf2 activation relative to DOX-treated cells. Preliminary indications, using a mouse triple-negative breast cancer cell line sensitive to DOX treatment, are that the prodrug maintains considerable toxicity against the tumor-inducing cell line, suggesting significant promise for this prodrug as a cardioprotective chemotherapeutic to replace DOX.


Asunto(s)
Profármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Línea Celular Tumoral , Doxorrubicina/efectos adversos , Humanos , Peróxido de Hidrógeno , Profármacos/farmacología , Profármacos/uso terapéutico
10.
Physiol Rep ; 10(8): e15192, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35439354

RESUMEN

Anthracyclines are standard-of-care chemotherapy for the treatment of triple-negative breast cancer (TNBC). However, high anthracyclines cumulative doses increase heart failure risk. Designing therapeutic strategies that ameliorate cardiac toxicities without compromising oncologic efficacy are important to improve TNBC outcomes and survivorship. The purpose of this study was to determine the impact of diet on TNBC chemotherapeutic responsiveness and development of chemotherapy-induced cardiac damage. Female BALB/c mice fed a control, Western, Mediterranean, or Western + fish oil diet were injected with 1 × 106 4T1-luciferase TNBC into the mammary fat pad. Tumors grew for 21 days before surgical tumor resection, then mice were treated with 3.3 mg/kg i.v. doxorubicin for 3 weeks. Vevo (R) cardiac ultrasound was performed. Female nu/nu mice were placed on diets before 1 × 105  MDA-MB-231-luciferase TNBC were injected via the tail vein to induce the development of lung metastases. Mice were treated with saline or 3.3 mg/kg i.v. doxorubicin for 3 weeks, and the development of metastases visualized by IVIS (R). Consumption of a high-fat diet increased TNBC growth regardless of dietary pattern. Western diet-fed mice developed lung metastases sooner and displayed increased lung metastatic lesion formation, which was not observed in Mediterranean diet-fed mice. Western diet-fed animals displayed worse cardiac function when compared with Mediterranean diet-fed animals. Hearts from Western diet-fed animals displayed increased fibrosis. Diet represents a modifiable component directly impacting tumor growth, antitumor chemotherapy efficacy, and cardiac toxicities. Our data suggest that the Mediterranean diet may reduce lung metastatic lesions formation and prevent the development of cardiac toxicities.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Animales , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Línea Celular Tumoral , Dieta , Doxorrubicina/efectos adversos , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
11.
Clin Cancer Res ; 28(6): 1192-1202, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35284940

RESUMEN

PURPOSE: Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance. EXPERIMENTAL DESIGN: We compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained at baseline from patients with melanoma treated with anti-PD-1 therapy. We also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic changes observed in peripheral blood mononuclear cells (PBMC) and patient plasma. RESULTS: Pretreatment PBMC from responders had a higher reserve respiratory capacity and higher basal glycolytic activity compared with nonresponders. Metabolomic analysis revealed that responder and nonresponder patient samples cluster differently, suggesting differences in metabolic signatures at baseline. Differential levels of specific lipid, amino acid, and glycolytic pathway metabolites were observed by response. Further, scRNAseq analysis revealed upregulation of T-cell genes regulating glycolysis. Our analysis showed that SLC2A14 (Glut-14; a glucose transporter) was the most significant gene upregulated in responder patients' T-cell population. Flow cytometry analysis confirmed significantly elevated cell surface expression of the Glut-14 in CD3+, CD8+, and CD4+ circulating populations in responder patients. Moreover, LDHC was also upregulated in the responder population. CONCLUSIONS: Our results suggest a glycolytic signature characterizes checkpoint inhibitor responders; consistently, both ECAR and lactate-to-pyruvate ratio were significantly associated with overall survival. Together, these findings support the use of blood bioenergetics and metabolomics as predictive biomarkers of patient response to immune checkpoint inhibitor therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Metabolismo Energético , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucocitos Mononucleares/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Receptor de Muerte Celular Programada 1
12.
Methods Mol Biol ; 2413: 63-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35044655

RESUMEN

The design of cancer immunotherapy drugs is essential for the continued investigation of novel drug regimens to improve responses and increase the survival of cancer patients. Methods to examine the interaction of effector immune cells with target cancer cells are limited by labor-intensive labeling that can be examined at specific time points. In this report, we examine an antigen-dependent model of effector cytotoxic (CD8+) T-cell-mediated cytotoxicity of target murine melanoma cells using a real-time cell impedance assay. The real-time monitoring allows measurement of viability and kinetics, allowing for a better understanding of effector/target cell interactions to support drug discovery.


Asunto(s)
Melanoma , Linfocitos T , Animales , Linfocitos T CD8-positivos , Muerte Celular , Citotoxicidad Inmunológica , Descubrimiento de Drogas , Impedancia Eléctrica , Humanos , Inmunoterapia , Melanoma/terapia , Ratones , Linfocitos T Citotóxicos
13.
Cells ; 11(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011741

RESUMEN

Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.


Asunto(s)
Proteínas de Punto de Control Inmunitario/metabolismo , Neoplasias/metabolismo , Dieta , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Microbiota/efectos de los fármacos
14.
Breast Cancer Res Treat ; 190(1): 53-67, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34448090

RESUMEN

PURPOSE: Menopause is associated with an increased risk of estrogen receptor-positive (ER +) breast cancer. To characterize the metabolic shifts associated with reduced estrogen bioavailability on breast tissue, metabolomics was performed from ovary-intact and ovariectomized (OVX) female non-human primates (NHP). The effects of exogenous estrogen administration or estrogen receptor blockade (tamoxifen treatment) on menopause-induced metabolic changes were also investigated. METHODS: Bilateral ovariectomies were performed on female cynomolgus macaques (Macaca fascicularis) to model menopause. OVX NHP were then divided into untreated (n = 13), conjugated equine estrogen (CEE)-treated (n= 13), or tamoxifen-treated (n = 13) subgroups and followed for 3 years. Aged-matched ovary-intact female NHP (n = 12) were used as a premenopausal comparison group. Metabolomics was performed on snap-frozen breast tissue. RESULTS: Changes in several different metabolic biochemicals were noted, particularly in glucose and fatty acid metabolism. Specifically, glycolytic, Krebs cycle, acylcarnitines, and phospholipid metabolites were elevated in breast tissue from ovary-intact NHP and OVX + CEE in relation to the OVX and OVX + tamoxifen group. In contrast, treatment with CEE and tamoxifen decreased several cholesterol metabolites, compared to the ovary-intact and OVX NHP. These changes were accompanied by elevated bile acid metabolites in the ovary-intact group. CONCLUSION: Alterations in estrogen bioavailability are associated with changes in the mammary tissue metabolome, particularly in glucose and fatty acid metabolism. Changes in these pathways may represent a bioenergetic shift in gland metabolism at menopause that may affect breast cancer risk.


Asunto(s)
Neoplasias de la Mama , Estrógenos , Terapia de Reemplazo de Hormonas , Receptores de Estrógenos/antagonistas & inhibidores , Anciano , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Terapia de Reemplazo de Estrógeno , Estrógenos Conjugados (USP) , Femenino , Humanos , Macaca fascicularis , Ovariectomía , Receptores de Estrógenos/genética
15.
Cancer Res ; 81(14): 3890-3904, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34083249

RESUMEN

Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.


Asunto(s)
Mama/fisiopatología , Dieta Alta en Grasa/efectos adversos , Animales , Carcinogénesis , Femenino , Humanos , Ratones , Microbiota , Transducción de Señal
16.
Am J Clin Exp Urol ; 9(1): 18-31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816691

RESUMEN

The development of distant metastasis is the leading cause of prostate cancer (CaP)-related death, with the skeleton being the primary site of metastasis. While the progression of primary tumors and the growth of bone metastatic tumors are well described, the mechanisms controlling pre-metastatic niche formation and homing of CaP to bone remain unclear. Through prior studies, we demonstrated that platelet secretion was required for ongoing tumor growth and pre-metastatic tumor-induced bone formation. Platelets stimulated bone marrow-derived cell (BMDC) mobilization to tumors supporting angiogenesis. We hypothesized that proteins released by the platelet α granules were responsible for inducing changes in the pre-metastatic bone niche. We found that the classically anti-angiogenic protein thrombospondin (TSP)-1 was significantly increased in the platelets of mice with RM1 murine CaP tumors. To determine the role of increased TSP-1, we implanted tumors in TSP-1 null animals and assessed changes in tumor growth and pre-metastatic niche. TSP-1 loss resulted in increased tumor size and enhanced angiogenesis by immunohistochemistry. Conversely, TSP-1 deletion reduced BMDC mobilization and enhanced osteoclast formation resulting in decreased tumor-induced bone formation as measured by microcomputed tomography. We hypothesized that changes in the pre-metastatic niche were due to the retention of TGF-ß1 in the platelets of mice after TSP-1 deletion. To assess the importance of platelet-derived TGF-ß1, we implanted RM1 CaP tumors in mice with platelet factor 4-driven deletion of TGF-ß1 in platelets and megakaryocytes. Like TSP-1 deletion, loss of platelet TGF-ß1 resulted in increased angiogenesis with a milder effect on tumor size and BMDC release. Within the bone microenvironment, platelet TGF-ß1 deletion prevented tumor-induced bone formation due to increased osteoclastogenesis. Thus, we demonstrate that the TSP-1/TGF-ß1 axis regulates pre-metastatic niche formation and tumor-induced bone turnover. Targeting the platelet release of TSP-1 or TGF-ß1 represents a potential method to interfere with the process of CaP metastasis to bone.

17.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925464

RESUMEN

The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.


Asunto(s)
Neoplasias , Trombospondina 1/fisiología , Microambiente Tumoral/fisiología , Animales , Adhesión Celular , Movimiento Celular , Humanos , Integrinas/metabolismo , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Linfocitos T/inmunología , Trombospondina 1/genética , Trombospondina 1/metabolismo
18.
Front Immunol ; 11: 540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300344

RESUMEN

The ability of T cells to sense and respond to environmental cues by altering their functional capabilities is critical for a safe and optimally protective immune response. One of the important properties that contributes to this goal is the activation set-point of the T cell. Here we report a new pathway through which TCR transgenic OT-I CD8+ T cells can self-tune their activation threshold. We find that in the presence of a strong TCR engagement event there is a shift in the metabolic programming of the cell where both glycolysis and oxidative phosphorylation are significantly increased. This diverges from the switch to a predominantly glycolytic profile that would be predicted following naïve T cell activation. Our data suggest this altered metabolic program results in the production of autocrine IL-4. Both metabolic pathways are required for this cytokine to be made. IL-4 signaling in the activated OT-I CD8+ T cell results in modulation of the sensitivity of the cell, establishing a higher activation setpoint that is maintained over time. Together these data demonstrate a novel mechanism for the regulation of IL-4 production in CD8+ T cells. Further, they reveal a new pathway for the self-tuning of peptide sensitivity. Finally, these studies uncover an unexpected role for oxidative phosphorylation in regulating differentiation in these cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interleucina-4/biosíntesis , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Comunicación Autocrina/inmunología , Ratones , Ratones Endogámicos C57BL
19.
Mol Cancer Res ; 18(1): 130-139, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628201

RESUMEN

Breast tumors have their own specific microbiota, distinct from normal mammary gland tissue. Patients with breast cancer that present with locally advanced disease often undergo neoadjuvant chemotherapy to reduce tumor size prior to surgery to allow breast conservation or limit axillary lymph node dissection. The purpose of our study was to evaluate whether neoadjuvant chemotherapy modulates the tumor microbiome and the potential impact of microbes on breast cancer signaling. Using snap-frozen aseptically collected breast tumor tissue from women who underwent neoadjuvant chemotherapy (n = 15) or women with no prior therapy at time of surgery (n = 18), we performed 16S rRNA-sequencing to identify tumoral bacterial populations. We also stained breast tumor microarrays to confirm presence of identified microbiota. Using bacteria-conditioned media, we determined the effect of bacterial metabolites on breast cancer cell proliferation and doxorubicin therapy responsiveness. We show chemotherapy administration significantly increased breast tumor Pseudomonas spp. Primary breast tumors from patients who developed distant metastases displayed increased tumoral abundance of Brevundimonas and Staphylococcus. We confirmed presence of Pseudomonas in breast tumor tissue by IHC staining. Treatment of breast cancer cells with Pseudomonas aeruginosa conditioned media differentially effected proliferation in a dose-dependent manner and modulated doxorubicin-mediated cell death. Our results indicate chemotherapy shifts the breast tumor microbiome and specific microbes correlate with tumor recurrence. Further studies with a larger patient cohort may provide greater insights into the role of microbiota in therapeutic outcome and develop novel bacterial biomarkers that could predict distant metastases. IMPLICATIONS: Breast tumor microbiota are modified by therapy and affects molecular signaling.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/microbiología , Microbiota/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Terapia Neoadyuvante , Metástasis de la Neoplasia , Estudios Retrospectivos
20.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881743

RESUMEN

Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias/patología , Microambiente Tumoral , Respuesta de Proteína Desplegada , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA