Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Reprod Sci ; 30(8): 2524-2536, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36759496

RESUMEN

Ovarian cryopreservation is an alternative for the preservation of fertility, and the subcutaneous transplantation site is considered one of the most promising. Studies evaluating the follicular growth and its relationship with gene expression and vascular perfusion are essential for improving this technique and its clinical application. Thus, the aim of this study was to evaluate the effect of subcutaneous autotransplantation and vitrification on follicular growth and atresia and their relationship with vascular perfusion and gene expression. Therefore, female mice were ovariectomized, and the ovaries were divided in two experimental groups (1) vitrified (treatment, n = 97) and (2) not vitrified (control, n = 97) and subsequently were transplanted. Then grafts, from both groups, were recovered after 1, 12, or 23 days (D1, D12, D23) and subjected to follicular quantification, morphometry, and qPCR. Non-transplanted ovaries (D0) were also used. The estrous cycle and vascular perfusion were monitored throughout the experiment. On D9, 100% of the animals had reestablished their estrous cycles (p > 0.05). Blood perfusion at the transplant site was similar for both treatments (p > 0.05), with greater perfusion at the site of vitrified transplants only on D1 (p < 0.05). A drastic reduction in the number of antral follicles and an increased number of atretic follicles were observed on D1 (p < 0.0001), associated with upregulation of Casp3, Fshr, and Igf1r; and downregulation of Bax, Acvr1, Egfr, and Lhcgr (p < 0.05). Our findings indicate that the first day after subcutaneous transplantation is a critical period for follicular survival, with intense follicular atresia independent of Bax upregulation.


Asunto(s)
Atresia Folicular , Ovario , Femenino , Ratones , Animales , Proteína X Asociada a bcl-2 , Folículo Ovárico , Criopreservación/métodos , Vitrificación , Expresión Génica
2.
Biofouling ; 37(2): 246-256, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33730946

RESUMEN

Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria Meiothermus, Thermomonas and Symbiobacterium were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.


Asunto(s)
Bacterias , Agua , Archaea , Bacterias/genética , Biopelículas , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA