Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
mBio ; 14(1): e0309722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622141

RESUMEN

Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.


Asunto(s)
Dengue , Flavivirus , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Dengue/tratamiento farmacológico , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química
2.
Hepatol Commun ; 4(5): 657-669, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32363317

RESUMEN

Yellow fever (YF) is a viral hemorrhagic fever that typically involves the liver. Brazil recently experienced its largest recorded YF outbreak, and the disease was fatal in more than a third of affected individuals, mostly because of acute liver failure. Affected individuals are generally treated only supportively, but during the recent Brazilian outbreak, selected patients were treated with liver transplant. We took advantage of this clinical experience to better characterize the clinical and pathological features of YF-induced liver failure and to examine the mechanism of hepatocellular injury in YF, to identify targets that would be amenable to therapeutic intervention in preventing progression to liver failure and death. Patients with YF liver failure rapidly developed massive transaminase elevations, with jaundice, coagulopathy, thrombocytopenia, and usually hepatic encephalopathy, along with pathological findings that included microvesicular steatosis and lytic necrosis. Hepatocytes began to express the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular calcium (Ca2+) channel that is not normally expressed in hepatocytes. Experiments in an animal model, isolated hepatocytes, and liver-derived cell lines showed that this new expression of ITPR3 was associated with increased nuclear Ca2+ signaling and hepatocyte proliferation, and reduced steatosis and cell death induced by the YF virus. Conclusion: Yellow fever often induces liver failure characterized by massive hepatocellular damage plus steatosis. New expression of ITPR3 also occurs in YF-infected hepatocytes, which may represent an endogenous protective mechanism that could suggest approaches to treat affected individuals before they progress to liver failure, thereby decreasing the mortality of this disease in a way that does not rely on the costly and limited resource of liver transplantation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA